Technical Report

Automated Algorithm Generation
for Visual Control Structures

by
Szilvia Gyapay
Daniel Varré6

December, 2000

Department of Measurement and Information Systems
Budapest University of Technology and Economics

This work was supported by the Hungarian National Scientific Foundation Grant
OTKA T030804

Contents

1 Introduction
1.1 System Verification L
1.1.1 Formal Methods in System Design
1.1.2 Mathematical Model Transformation
1.2 A Visual Automated Model Transformation System
1.3 Automatic Transformation of Control Structures
1.3.1 Objectives
1.3.2 Conceptional Overview o
1.3.3 Summary
1.4 The Structure of the Report L.

2 Theoretical Basis of Model Transformation
2.1 Graph Models and Graph Transformation
2.1.1 Graph Models
2.1.2 Graph Transformation
2.1.3 Graph Transformation Systems
2.2 Model Transformation
2.2.1 Model graph transformation oL
2.3 Graph Transformation Unit
2.3.1 Control Conditions
2.4 Conclusion

3 Visual Control Structure in UML
3.1 Introduction
3.1.1 UML Specification of Model Transformation
3.2 Meta Object Facility
3.2.1 Basic MOF Notation
3.2.2 The MOF Model
3.3 The MOF Metamodel of UML Statecharts
3.4 Control Flow Description by UML Statecharts
3.5 Conclusion

4 From UML Statecharts to Prolog Code
4.1 Basic Assignments

13
13
13
14
15
16
16
18
20
22

23
23
24
25
25
26
27
31
32

35

CONTENTS

From UML Statecharts to CFG Models 41
5.1 The MOF Metamodel of Control Flow Graph 41
5.2 Transformation to the CFG Model 43

5.2.1 StateRules 44

5.22 EdgeRules 49
From CFG to Prolog Code Models 55
6.1 A Short Introduction to Prolog 55

6.1.1 Informal Introduction to Prolog Programs 25

6.1.2 Procedural Semantics of Prolog o7

6.1.3 Control Restrictions in Prolog o8
6.2 Model Transformation to the Prolog Code Model 29

6.2.1 The MOF Metamodel of the Prolog Code Model 59
6.3 The Process of the Transformation 62

6.3.1 Control Structure Rules 62

6.3.2 Attaching Syntactic Elements 7
Algorithm Generation 81
7.1 General Description of Models 81
7.2 Prolog Code of the Transformation 84
7.3 Prolog Code of the Sample Control 84
Conclusion and Result Evaluation 85
8.1 Benchmark Examples 85
8.2 Benchmark Results 87
8.3 Future Work 88
84 Conclusion L 88
The Prolog Source Code of Transformations 91
A1 From UML Statecharts to Control Flow Graphs 91
A.2 From Control Flow Graphs to Prolog Code Model Graphs 95

A.3 The Prolog Source Code of Control Algorithm Generation 102

Chapter 1

Introduction

1.1 System Verification

Due to the immense complexity of dependable, real-time systems, an early conceptual and
architectural validation based on precise formal verification techniques is essential aiming
to identify critical bottlenecks to which the system is highly sensitive for obtaining a guar-
anteed design quality. In order to avoid costly re—design cycles such a system verification
must preceed the implementation phase.

The increasing need for effective design has necessitated the development of standard-
ized design languages and methods allowing system developers to work on a common
platform of design tools.

The Unified Modelling Language (UML) is a visual specification language (providing a
collection of best engineering practises of the several decades) that has been adopted as
the standard object—oriented modelling language for a large scale of IT systems ranging
from pure software systems to embedded systems (systems reactively interacting with their
environment) recently.

UML represents a collection of best engineering practices that have proven to be suc-
cessful in the modelling of large and complex systems, and recently, UML has been regarded
as the standard object—oriented modelling language.

1.1.1 Formal Methods in System Design

Formal methods provide a rigorous and effective way to model, and analyze computer
systems on a strict mathematical platform. For many years, they have been a topic of
research with valuable academic results. However, their industrial utilization is still limited
to specialized development sites, despite their vital necessity originating in the complexity
of IT products and increasing requirements for dependability and Quality of Service (QoS).

System verification is carried out on mathematical models, e.g. Petri nets (e.g. mod-
elling parameters of system performance), Data Flow Networks (used for modelling fault
propagation), temporal logic (for verifying safety critical criteria). A common property of
these methods is that they should traverse extremely large state spaces, which may easily
lead to combinatorial explosion.

However, the use of formal verification tools (like model checkers SPIN [10] or PVS
[21]) in IT system design is hindered by a gap between practice-oriented CASE tools
and sophisticated mathematical tools. This gap is a result of the traditionally system
verification which was carried out by running hand-written (by mathematical experts

5

6 CHAPTER 1. INTRODUCTION

and not by the designers), ad—hoc implementation of mathematical models on the system
description.

e On the one hand, system engineers usually show no proper mathematical skills re-
quired for applying formal verification techniques in the software design process.

e On the other hand, even if a formal analysis is carried out, the consistency of the man-
ually created mathematical model and the original system is not assured, moreover,
the interpretation of analysis results, thus, the re—projection of the mathematical
analysis results to the designated system is problematical.

1.1.2 Mathematical Model Transformation

Design of an IT system Mathematical analysis
Automated
model generation _ | Mathematical
(Semi-)formal i model
specification, J
system
model

_ Back-annotation Analysis

<

* Code generation

Implementation

Figure 1.1: A novel approach

According to novel approaches in IT system design [4, 25|, the distinct phases of textual
specification and system model are integrated into a (semi-)formal UML based description
of the system. The mathematical model is planned to be generated automatically from
the system model, and the results of the analysis are back-annotated to the same model.
As a result, the time spent on re-designing the system is decreased, moreover, the imple-
mentation is also supported by automated code generation.

The step generating the description of the target design on the input language of
mathematical tools from the UML model of the system is called mathematical model
transformation.

The inverse direction of model transformation (referred as back—annotation) is of
immense practical importance as well when some problems (e.g. a deadlock) are detected
during the mathematical analysis. After an automated back—annotation these problems
can be visualized in the the same UML system model allowing the designer to fix conceptual
bugs within his well-known UML environment.

Several semi-formal transformation algorithms have already been designed and imple-
mented for different purposes.

e formal verification of functional properties [15]

1.2. A VISUAL AUTOMATED MODEL TRANSFORMATION SYSTEM 7

e quantitative analysis of dependability attributes [5, 6]).

A first formal specification method for such model transformations (called VIATRA)
was given in [27, 25, 28| (as a result of an ongoing research at the Department of Mea-
surement and Information Systems (DMIS), Budapest University of Technology and Eco-
nomics) aiming to provide a general framework for a visual, automated model transforma-
tion system with the facilities of an automatically generated transformation algorithm of a
proven quality.

The process of model transformation is characterized by a model analysis round-trip
illustrated in Fig. 1.2. Typically, a system designer and a transformation designer partici-
pates in such a round-trip with the following roles.

e A transformation designer specifies model transformations from UML to various
mathematical models. From his specification, a transformation algorithm is gen-
erated at compile time.

e A system analyst designs complex systems using UML as modelling language. During
the software life cycles, he needs several verification steps to be performed running
the previously generated model transformation programs.

1.2 A Visual Automated Model Transformation System

3 4
77777777 UML Model Transformation Petri Net
mode | - tool
5 XMI XMI
document document
i Graph Transformation T
Source | T TTTTTT = Target
GraTra i
! graph \ GraTra / graph
i rules
1 T
y

Transform 6
Engine XMl

.. e document
"~ [Back- Gralra
Annotation rules
8 in UML
(a) Architectural concepts (b) Technological summary

Figure 1.2: An overview of model transformation

Model description A well-defined transformation necessitates a uniform and precise
description of source and target models, and should follow the main standards of the in-
dustry (as having industrial relevance), therefore, a formal underlying formalism is needed.
For this reason, the Unified Modelling Language (UML) is used as the front-end of

8 CHAPTER 1. INTRODUCTION

model transformations, and the user—end specification language of model transformation
rules is UML as well. UML conceptually follows the four-layer Meta Object Facility
(MOF) meta-modelling architecture [19], which allows the definition of meta—objects for
similarly behaving instances (more details can be read in chapter 3).

Uniform description of models The front—end and back—end of a transformation
(UML as the source model and a formal verification tool as the target model) is defined by
a uniform, standardized description language of system modelling, that is, XMI (XML
Metadata Interchange) [18], which is a special dialect of XML, the approving novel
standard of the Web.

Due to the fact that UML models can be exported in an XMI format (the export
process is supported by most UML CASE tools) an open, tool-independent architecture
is obtained.

Designing model transformation rules The visual specification of these transforma-
tions is supported by graph transformation, which combines the advantages of graphs
and rules into an efficient computational paradigm. Model transformation rules are defined
in a special form of graph grammar rules.

A graph transformation rule is a special pair of pattern graphs where the instance
defined by the left hand side is substituted with the instance defined by the right hand
side during its application (discussed in more details see Chapter 2).

The model transformation rules are aimed to be specified by using the visual notation
of UML [26]. However, for obtaining a tool-independent transformation specification, the
transformation rules will also be exported in an XMI based format, conforming to the
approving standard of graph transformation systems [1].

Correctness and completeness of transformations After having specified a set of
transformation rules, the correctness and completeness of the transformation has to be
verified aiming to prove that the resulted model is semantically equivalent to the source
UML model. These questions will be verified by planner algorithms and theorem proving
techniques of artificial intelligence operating on user defined basic equivalent source and
target structures ([]).

Automated code generation Even if the description of the transformation is theoret-
ically correct and complete, additionally, the source and target models are also mathemat-
ically precise, the implementation of these transformations has a high risk in the overall
quality of a transformation system. As a possible solution, automatic transformation code
generation could be based on graph models and visual transformation rules. (The current
paper mainly contributes to that specific phase of the model transformation round-trip).

The transformation engine As being a logical programming language based on pattern
matching methods, Prolog seems to be the most suitable language for the implementation
of the transformation engine (a short description of Prolog is discussed in Section 6.1).
Therefore, the uniform, XMI based models and rules are translated into a Prolog graph
notation serving as the input data and the algorithm to be executed by the transformation
engine. An attributed and typed graph representation is generated for the source model,
and a similar graph is to be obtained as a result of the transformation.

1.3. AUTOMATIC TRANSFORMATION OF CONTROL STRUCTURES 9

The transformation process specified by visual model transformation units is executed
in the form of a Prolog program manipulating the previous graph based models by the
powerful backtracking and unification method of Prolog.

Benchmark transformations The model transformation system is supposed to be used
in real industrial applications. A benchmark transformation (transforming the static as-
pects of UML models into timed Petri Nets for dependability analysis in an early phase
of system design; see [25] for further details) has already been designed and implemented.
The model transformation method of the current report provide a further benchmark of
both academic and industrial relevance.

Back—annotation of analysis results As the results of the mathematical model trans-
formation are automatically back—annotated to the UML based system model, the system
analyst are reported from conceptual bugs in their well-known UML notation. After certain
modifications and corrections on the system model are performed, the system verification
process might step into a consecutive phase.

1.3 Automatic Transformation of Control Structures

1.3.1 Objectives

In the current report, some major questions of automatic code generation for model trans-
formation systems are discussed. A general automatic code generation approach for such
systems must deal with at least the following.

e Generating code for model transformation rules including the graph patterns specified
by the left hand side of rules and required modifications (addition, deletion).

e Generating code for the control structure specified by control conditions in transfor-
mation units.

The aim of the current report is to extend the model transformation environment by de-
veloping a transformation supporting the automated generation of an appropriate algorithm
in Prolog from a UML based control specification of transformation units.

In fact, several CASE tools provide the facility of some automated code generation into
object—oriented programming languages (like Java or C++). However, code generation in
this case means to project the static information contained by UML class diagrams (e.g.
in Rational Rose) or function calls described by sequence diagrams (as in a product of
TogetherSoft), which is much more simple, than decoding dynamic behaviour.

Existing solutions for implementing UML statecharts (e.g UML DynaCode), which
statecharts are used for defining the internal behaviour of objects, lack a general (and
verifiable) methodology for the automation.

1.3.2 Conceptional Overview

The control flow in model transformation units is specified in a high abstraction level visual
modelling language (i.e. UML statecharts) to avoid the use of an entirely new mathematical
method or a purely textual (and thus lower level) programming language, which may be
difficult to handle by transformation designers.

10 CHAPTER 1. INTRODUCTION

As the transformation engine in VIATRA is Prolog due to its powerful unification
method which can be exploited in an efficient graph pattern matching for model trans-
formation rules, Prolog was chosen for the target language of implementation. Although
the logic programming language Prolog is considered to be one of the highest abstraction
level programming languages, it still does not reach the abstraction level of a 4GL! visual
language like UML.

As a result, an automated algorithm generation has to bridge a huge abstraction gap
between a visual and a textual language as usual. As a consequence, our method divides
the entire transformation from UML statechart specification of the control structure of
model transformation units to executable Prolog code into three distinct phases.

e At first, an abstract model called Control Flow Graph (CFG) is generated from
the UML based visual specification which represents the control flow in a general
way.

e Secondly, a Prolog code specific (PC) graph model is derived from the CFG
model that is closely related to the final executable Prolog code.

e Finally, a simple algorithm traverses the Prolog code graph and prints the syntactic
elements attached to nodes and edges into the target file.

Each transformation step is defined visually by means of well-formed model transfor-
mation rules.

All these rather theoretical concepts have been implemented in Prolog, and investigated
on benchmark applications in order to assess its run—time performance, and informally
verify the correctness of the transformation.

Please note, that during this implementation phase, function (or rather predicate in case
of Prolog) calls for model transformation rules and units were treated as atomic (without
revealing their internal content), since the current paper does not deal with the automatic
code generation for model transformation rules but control structures.

1.3.3 Summary
The report extends the state—of-the—art in the following topics.

e As its main achievement, the current report extends the existing model transforma-
tion environment at DMIS with the facility of an automatic algorithm generation for
implementing control structures.

e As the automated code generation method (which is based on model transformation
rules) is completely implemented in Prolog (and tested with respect to its run—time
performance, in addition) it serves as a benchmark of the model transformation
approach.

e It provides an automated implementation for control conditions of transformation
units, which units are widely used in GRACE [13], a future environment in the
graph transformation community.

e Due to its model independent constructs and the underlying mathematical frame-
work (i.e. model transformation), it may serve as a basis for arbitrary future code
generation problems.

!Fourth Generation Language

1.4. THE STRUCTURE OF THE REPORT 11

1.4 The Structure of the Report

The structure of the current paper can be divided into three main parts.
The first part (from Chapter 2 to 4) provides a short introduction to both theoretical
and practical background of automated algorithm generation.

e Chapter 2 gives a short introduction to the theoretical foundations of graph
and model transformation including formal definitions, the main properties of
graph and model transformation, and the concept of transformation units fo-
cusing on its control description by control conditions which will serve as the
basis of the paper.

e In Chapter 3, the basic notation of UML and major concepts of MOF meta-
modelling are discussed. In addition, the overloaded visual notation of UML
statecharts for supporting visual specification of initial control flow description is
described in details.

e In Chapter 4, an overview is provided discussing the process of the transformation
from UML statecharts to executable Prolog code of control structures such
as Function calls, sequential execution, loops, if-then—else structure and
parallelly execution corresponding to control conditions.

In the second part, Chapters from 5 to 7 are dominated by my own contributions,
together with illustrations of a sample control flow at the end of each phase.

e The uniform generation of an abstract model — Control Flow Graphs (CFG)
representing the control flow — from UML statechart graphs is introduced in Chap-
ter 5 and specified by transformation rules.

e Chapter 6 contains a brief introduction to the logic programming language Pro-
log and the transformation rules from CFG model to a Prolog Code specific
model.

e In Chapter 7, the Prolog notation of model descriptions used by the gener-
ation codes are introduced together with the graph traversal algorithm, which
generates the code of the control flow from descriptions in PC model.

In Chapter 8 our transformation method is tested for time behaviour, and the
intermediate files are assessed with respect to their size on two UML benchmarks, which
chapter also concludes our work.

The three appendices contain the complete source code of transformations imple-
mented in Prolog;

e the code described in Appendix A.1l generates a CFG model description from a
UML statechart description, according to the CFG Model chapter,

e Appendix A.2 contains source code to generate a Prolog Code model description
from the CFG model description, according to Chapter 6.

12 CHAPTER 1. INTRODUCTION

e Finally, the Prolog algorithm (discussed in Chapter 7) of transformation unit control
is obtained by execution of the Prolog source code (in Appendix A.3) on Prolog Code

model description of control flow.

In the following chapter, the a short theoretical foundations of graph and model trans-
formation is discussed (focused on control of transformation units).

Chapter 2

Theoretical Basis of Model
Transformation

Graphs are well-known and frequently used means to represent complex objects, diagrams
and networks, like flowcharts, entity-relationship diagrams, Petri Nets, and many more.
Rules have proved to be extremely useful for describing local transformations; areas like
e.g. language definition, logic and functional programming, theorem proving.

Graph transformation combines the advantages of both graphs and rules into a single
computational paradigm, used for generation, manipulation, recognition, and evaluation
of graphs [3].

The theoretical foundations of model transformation are built upon the concepts of
graph transformation. Both source and target models are described by a special typed
and directed graph called model graph, and the construction of the target model from a
given source model is described by special graph transformation rules called model trans-
formation rules. (For more details see [28].) The current chapter briefly introduces the
theoretical basis of both graph and model transformation systems.

2.1 Graph Models and Graph Transformation

2.1.1 Graph Models

Definition 2.1.1 A directed graph G = (NODES, EDGES, source, target, label) consists of
a finite set NODES of nodes , a finite set EDGES of edges, two mappings assigning the
source and the target node to each edge, and a mapping label, assigning o labelling symbol
from a given alphabet to each node and each edge.

An edge e in G goes from the source source(E) to the target target(e) and is incident
to source(E) and target(E).

Definition 2.1.2 A graph L is a subgraph of G, denoted by L C G, if the node and the
edge sets of L are subsets of the respective sets of G, and the source, the target and label
mappings of L coincide with the respective mappings of G restricted to L.

Definition 2.1.3 L has an occurrence in G, denoted by L — G, if there is a mapping occ

which maps the nodes and the edges of L to the nodes and the edges of G, respectively, and
preserves sources, targets, and labellings.

13

14 CHAPTER 2. THEORETICAL BASIS OF MODEL TRANSFORMATION

Definition 2.1.4 Labels in typed graphs are divided into classes, called types, and that
edges of a certain type are restricted to be incident only to certain types of source and target
nodes. Typed graphs can be specified by so—called graph schemata

Definition 2.1.5 Attributed graphs are equipped with attributes. An attribute can be
a number, a text, an expression, a list or even a graph. Attributes can be of different
types and attribute operations compatible with these types are available to manipulate the
attributes.

2.1.2 Graph Transformation

Graph transformation consists of applying a rule and iterating this process. Fach rule
application transforms a graph by replacing a part of it by a graph.

Each rule r contains a left-hand side (LHS) graph L and a right-hand side (RHS) graph
R. The application of r to a graph G replaces an occurrence of the LHS L in G by the RHS
R. This is done by

1. finding an occurrence of L in G
2. removing a part of the occurrence of L from G,
3. gluing R and the remaining graph D,

4. connecting R with D via the insertion of new edges between the nodes of R and those
of D.

The gluing of R and D is specified in the gluing component of a rule and the connection
of R with D in the embedding component. Since the replacement shall often be done in a
controlled way, rules may also contain application conditions.

Definition 2.1.6 A graph transformation rule r = (L,R, K, glue,emb, appl) consists of
two graphs L and R, called the left—hand side and the right—hand side of r, respectively,
a subgraph K of L called interface graph, an occurrence glue of K in R, relating the
interface graph with the right-hand side, an embedding relation emb, relating nodes of
L to R, and a set appl specifying the application conditions for the rule.

Definition 2.1.7 An application of a rule r = (L,R, K, glue,emb, appl) to a given graph
G yields a resulting graph H, provided that H can be obtained from G in the following five
steps.

1. CHOOSE an occurrence of the LHS L in G.
2. CHECK the application conditions according to appl.

3. REMOVE the occurrence of L up to the occurrence of K from G as well as all dangling
edges, i.e. all edges incident to a removed node. This yields the context graph D
of L which still contains an occurrence of K.

4. GLUE the context graph D and the RHS R according to the occurrences of K in D and
R. That is,construct the disjoint union of D and R and, for every item in K, identify
the corresponding item in D with the corresponding item in R. This yields the gluing
graph E.

2.1. GRAPH MODELS AND GRAPH TRANSFORMATION 15

5. EMBED the RHS R into the context graph D according to the embedding relation emb.
For each removed dangling edge incident with a node v in D and the image of a node
v of L in G, and each node v' in R, a new edge (with the same label) incident with
v and the node v" is established in E provided that v',v" belongs to emb.

The application of r to G yielding H 1s called direct derivation from G to H through
r and is denoted by G =, H or simply by G=H .

e el e s

l CHOOSE & CHECK T

o b & ol
I —)

l REMOVE

e

Figure 2.1: Mlustration of a graph transformation step

Figure 2.1 illustrates these steps on a sample graph where appl requires the occurrence
of L in G to be isomorphic to L and emb relates the unfilled nodes of L and R.

At first sight, the definition of a graph transformation step looks unnecessarily compli-
cated but it has the main advantage that all the relevant graph transformation approaches
(e.g. [8, 7, 16, 24]) can be defined as a special case of it.

2.1.3 Graph Transformation Systems

Definition 2.1.8 A set P of rules is the simplest form of a graph transformation sys-
tem.

Definition 2.1.9 A set P of rules together with an initial graph S and o set T of ter-
minal labels form a graph grammar.

Definition 2.1.10 Given a set P of rules and o graph Gg, a sequence of successive direct
derivations Go = G; = ... = G, is a derwation from Gy to G, by rules of P, provided
that all used rules belong to P. The graph G, is said to be derived from Gg by rules of P.

16 CHAPTER 2. THEORETICAL BASIS OF MODEL TRANSFORMATION
Definition 2.1.11 The set of all graphs labelled with symbols of T only that can be derived
from the initial graph S by rules of P, is the language generated by P, S, and T.

Please note the non—determinism occurring in graph transformation: We first have to
choose one of the rules applicable to a given graph. Furthermore, the chosen rule may be
applicable at several occurrences of its LHS. The result of a graph transformation depends
on these choices which are still completely arbitrary.

The non—determinism may be restricted by control conditions in several ways:

1. by determining the next rule in dependence on the previous ones, or,

2. by applying a rule according to priority.

2.2 Model Transformation

2.2.1 Model graph transformation

Definition 2.2.1 A model graph G is a directed, typed and attributed graph with the
following structure.

e A graph node is associated with an identifier Id, and a type T.

e An edge has an own Id, a reference to a source Idg and a target Idr identifier, with
a type Tedge.

e Both nodes and edges may be related to attributes (represented as special graph nodes)
with an Id identifier an data value V.

A first version of the graph model can be found in [28] together with an algorithm
building the appropriate graph structure from an XMI document.

<SimpS> <Vaue>

<Trans> <SimpS> variantTU

Figure 2.2: A sample model graph

Example 2.2.2 In Figure 2.2, a sample model graph can be observed containing

e model graph nodes such as

— SimpS typed sl and s2
— Trans typed t1,

e model graph edges (their own ID are not shown in the illustration)

2.2. MODEL TRANSFORMATION 17

— a source typed from t1 to si,

— a target typed edge from t1 to s2. The meaning of Trans node is that there
exists a transition between s1 and s2 and source denotes s1 as the starting
node,

— two name typed edges from s1 to vl and from s2 to v2,

e v1 and v2 nodes are attributes attached to SimpS typed nodes, indicating their
names (data) as values.

Definition 2.2.3 A model transformation rule () is a special graph transformation
rule, where both graphs L and R are partitioned into two disjoint parts (source and target),
connected only by reference edges and nodes.

A sample model transformation rule RuleSS is depicted in Figure 2.3. As can be
seen, Simp$S typed nodes of source model in the left-hand side (indicated by Left-Source),
while Left—Target is empty, i.e. the target model before the application of the rule has no
corresponding (already transformed) nodes, are transformed to CFG nodes in the Right—
Target by the application of RuleSS, while the source model is left unchanged.

&SimpS> <Value> | <CFG> <values

<SimpS> <Value> | @ @%@
:] N b :
N

O O i

N SO 7’
<SubRef>
Refl

Right - Source Right - Target

Left - Source Left - Target

Figure 2.3: A sample model transformation rule RuleSS

A model transformation, which applies to model graphs RuleSS as long as possible,
transforms the previous (Fig. 2.2) sample model graph of a given source model to the
depicted one in Figure 2.4 of a target model.

<CFG> <vaue>
ftsTU
<Vaue>
o=
<CFG> variantTU

Figure 2.4: The transformed sample model graph to a target model

The process can be followed in Figure 2.5 as seeing both model graphs during the
transformation.

18 CHAPTER 2. THEORETICAL BASIS OF MODEL TRANSFORMATION

<SImpS> <value> <SimpS> <value> | <CFG> <Value>
:
] ftsTU
B —
<Value> <Value>
<Trans> <SiMpS> variantTU ' <Trans> <SiMpS> variantTU
Left-Source Left-Target Left-Source 1 Left-Target
<SimpS> <value> | <CFG> <Value>
:
] fisTU
<Value> : <CFG> <Value>
[ose
<Trans> <SIMpS> variantTU : variantTu

Left-Source Left-Target

Figure 2.5: Result of the model transformation

2.3 Graph Transformation Unit

Real applications of graph transformation surely consist of hundreds of rules thus the
management requires some sophisticated mechanisms. Structuring principles are needed
to eliminate the feature that different graph transformation approaches are suitable for dif-
ferent applications. One of the several modularization concepts for graph transformation
systems is the transformation unit which allows to decompose large graph transforma-
tion systems into small reusable units. These units are independent of a specific graph
transformation approach, namely, they are suitable to manipulate graphs in all existing or
user-defined graph transformation approaches.

The graph transformation is a sequence of rule applications starting with initial graphs,
hence it can be regarded in such a way that it obtains an input-output relation on graphs
where each pair comprise an initial graph and its transformed graph. In particular, trans-
formation units provide a functional abstraction meaning that a complex graph transfor-
mation is encapsulated as a binary relation of graphs.

A transformation unit consists of five basic elements:

e Initial and terminal graphs. The initial and terminal graphs define the possible
start and the final states of the transformation, the description of initial graphs can
be interpreted as a precondition for the graph transformations performed by the
transformation unit and the terminal graphs can be regarded as postconditions.

e Rules. Rules is a finite set of arbitrarily rules (graph transformation rules in our
case).

e Uses. This is a set of imported transformation units providing a modular structuring
mechanism. One of the main feature of transformation units is unity which allows to
view an imported unit as atomic to use its functionality in the current transformation
unit.

2.3. GRAPH TRANSFORMATION UNIT 19

e Control conditions. The application of the transformation rules can usually
proceed in a non-deterministic way for two reasons. The first reason of the non-
deterministic is the applicability of more than one rule to a graph. Finding an
occurrence of the LHS of the rule in the graph is the second one (it emerged in the
introduced sample, too). Although this non-determinism is useful during the design-
ing and analysing phase, it has to be eliminated for the final algorithm generation
phase.

In order to ensure the correctness of the generated model transformation code or
algorithm, its specification must be completely deterministic and be able to be regu-
lated by control mechanisms. With the help of the transformation units, the control
flow of the transformation algorithm can be described and given a sequence of steps
by the extended regular expressions of the control conditions.

In the following, transformation units will be introduced formally, following [3, 14].

Definition 2.3.1 A transformation unit tu = (I,U, R,C,T) is a system where I and T
are graph class expressions (describing initial and terminal graphs), R is a finite set of rules
and C is a control condition, and U is the set of imported transformation units (which is
empty, initially).

In order to be independent from a particular graph model, a specific type of rules and
the transformation units are defined over some graph transformation approaches.

Since control conditions may contain identifiers (usually referred to imported transfor-
mation units or rules), the semantics of control conditions depends on its environment.

Definition 2.3.2 Environment s a mapping, which associates each identifier with a bi-
nary relation.

A graph transformation approach A consists of

a class G of graphs

a class R of rules

a rule application operator = specifying a binary relation =,C G x G for each r € R,
i.e. = yields all pairs (G, G’ of graphs where G’ is obtained from G by applying r

(in order to specify the initial and terminal graphs of a transformation unit) a class
& of graph class expressions, such that each e € € specifies a subclass SEM(e) C §

and a class € of control conditions over some set ID of identifiers (since control
conditions may contain identifiers usually for the imported transformation units or
local rules, their semantics depends on their environment) such that each ¢ € €
specifies a binary relation SEMpg(c) C G x G for each every mapping E : ID —
P(G x G) where ID is a set of names and E is the related environment.

A transformation unit over a graph approach A means that I,T7 € &, RC R and U is
a set of (already defined) transformation unit over (A).

Definition 2.3.3 The interleaving semantics of transformation unit contains a pair
G,G" of graphs if G is an initial graph and G’ is a terminal graph, G can be transformed
into G' using the rules and the imported transformation units, and (G,G') is allowed by
the control condition.

20 CHAPTER 2. THEORETICAL BASIS OF MODEL TRANSFORMATION

As the current paper is concerned with the transformation of control conditions, the
following section provides a brief overview of most commonly used control conditions, those
described by a set of extended regular expressions (discussed in [28, 14| in details).

2.3.1 Control Conditions

Control conditions can regulate and restrict the process of the transformation in order
to be completely deterministic. Any binary relation on graphs may be used as control
conditions.

For example every string language L over ID (or an extended arbitrary set of control
conditions) can serve as a control condition: for an environment F each string zi-- -z,
in L specifies the binary relation obtained by the sequential composition of the meaning
of x; in E, i.e. SEMg(z1---z,) = E(z1) o--- 0 E(z,) and the empty string specifies
the identity relation on §. For instance, if z1,...,z,(n > 1) are graph transformation
rules and E(z;) represents all pairs (G;, G}) of graphs such G is obtained by applying z;
to Gy, then zy - - -z, specifies all pairs (G,G’) where G’ is the result of the application
of z1,...,x, in this order to G. L specifies the union of the semantic relations given by
elements of L.

In the following, a selection of control conditions used to specify and program with
graph transformation will be discussed:

e The class of reqular expressions REG over is recursively given by ¢,0 € REG, ID C
REG, and (e1;e2), (e1le2), (ex) € REG if e,e1,e2 € REG, where
— the expression ¢ requires that no rule or imported transformation unit is applied
— () specifies the empty set
— id € ID applies the appropriate rule or transformation unit exactly once

— ey; ey stands for the concatenation of e; and eg, i.e. the applying of e right
after e;

— e1]ey means the union of e; and ey, i.e. they can be applied parallelly (non—
deterministically) (fork)

— e* represents the transitive closure of e, i.e. arbitrarily often iterating e.
Formally, for each environment F:

— SEMpg
— SEMpg
— SEMpg
— SEMpg

sition
— SEMg(eile2) = SEMpg(e1) USEMEg(e2) and
— SEMpg(e*) = SEMg(e)*.

) means the identity relation on G

0)=10

id) = E(id)

e1;e2) = SEME(e1) o SEME(ez) where o means the sequential compo-

~—~ o~~~

e The control condition once(id), where id denotes a rule or an imported transforma-
tion unit, allows only interleaving sequences in which id is applied exactly once
while other rules or imported transformation units can be applied arbitrarily often.

Formally, for each environment E, (G,G') € SEMEg(once(id)) if there exist
Go,...,G, € Gand idy ...id, € ID* such that

2.3. GRAPH TRANSFORMATION UNIT 21

1. Go=G and G, = G’
2. (Gi—1,G;) € E(id;) fori=1,...,n, and
3. there exists exactly one ¢ € {1,...,n} with id; = id.

e A control condition ¢ specifies a binary relation on graphs. The control condition ¢!
serves as an induced control condition which applies ¢ as long as possible.

Formally, for each environment E the condition (c!) specifies that a pair (G,G’) is
in SEMg(c!) if (G,G') € SEMg(c)* and there is no graph G” with (G',G") €
SEME(c).

e A conditional is of the form if a then c; else ¢y serves as a branch of the control
flow (depending on the evaluation of a), where ¢1,co are already defined control
conditions.

Formally, for each environment E it allows all pairs (G, G’ of graphs such that G €
SEMpg(a) and (G,G") € SEMg(c1) or G ¢ SEMg(a) and (G,G") € SEMg(ca).

According to the introduced extended regular expressions (all of described control con-
ditions), the definition of model transformation unit is the following:

Definition 2.3.4 A model transformation unit s a transformation unit where

e the graph model is the one described in Section 2.1.1
e the R set of rules are well-formed model transformation rules,

e the class of control conditions (containing control flow information) are composed
of concatenation, once, as long as possible, branch and fork control conditions.

One may easily observed, that the control conditions allowed in model transformation
units provide the most general control structures used in traditional programming lan-
guages. Therefore the automatic generation of corresponding transformation algorithm in
one of these languages is natural goal.

A sample model transformation unit with some introduced control condition is depicted
in Fig. 2.6 (taken from [26]) for illustrating the concept of transformation units and control
conditions.

uml2imTU(G,9'):
initial: model graph(9)
terminal: model graph(g’)
rules: variantR, rule A, rule B
uses: ftsTU linkTU
control: ftsTU; (((variantR!); linkTU) | (if ¢ then rule A else rule_B))

Figure 2.6: Sample model transformation unit “uml2imTU”

Figure 2.6 shows a model transformation unit (um12imTU), which derives the graph G’
from input graph §. The transformation unit states that

e the initial and terminal graph must be a well-formed model graph,

22 CHAPTER 2. THEORETICAL BASIS OF MODEL TRANSFORMATION

e uml2imTU has a rule called variantR,

e two further units (not discussed here in details) are imported, namely, £tsTU and
1inkTU

e the control condition prescribes that

1. £tsTU is executed first;
2. the control flow forks afterwards;

(a) in one thread one should apply variantR as long as possible followed by
the transformation described in 1inkTU;

(b) in the other thread, if condition ¢; evaluates to true then rule_A is applied
otherwise rule_B is executed.

2.4 Conclusion

In the current chapter, the basic foundations of graph and model transformation were
discussed. The paradigm of graph transformation was introduced to provide a rule-based
manipulation method for arbitrary graphs commonly used in system modelling. Model
transformation systems serving as a framework for automatic transformations between
system and mathematical models were introduced on the basis of graph transformation by
means of model graphs, model transformation rules and units.

To achieve an automatically generated model transformation code or algorithm, the
final specification (created by the transformation designer) should be completely deter-
ministic otherwise the verification of the generated transformation code against the speci-
fication of the transformation is almost impossible. With the help of transformation units,
the control flow of the transformation algorithm can be described by control conditions in
such a way where the gap between the control specification and a declarative (or rather
logic) programming language (Prolog in our case) is minimal.

In the following, the visual representation of the control flow of model transformation
units will be described using the notation of the Unified Modelling Language.

Chapter 3

Visual Control Structure in UML

The Unified Modelling Language (UML) is a language for specifying, visualizing,
constructing, and documenting the artifacts of software systems, as well as for business
modelling and other non-software systems. The UML represents a collection of best en-
gineering practises that have proven successful in the modelling of large and complex
systems.

3.1 Introduction

The development of IT systems and software products are described from different aspects
represented by various sort of UML diagrams such as e.g.

e The all of use case diagrams is to identify system level relations at the top level
of hierarchy. They show the relationships among actors and and use cases (the
specification of a sequence of actions, including variants, that a system can perform,
interacting with actors of the system) within a system.

e Class diagrams provide a collection of declarative (static) model elements, such as
classes, types, and their contents and relationships.

e Sequence diagrams show object interactions arranged in time sequence. In par-
ticular, it shows the objects participating in the interaction and the sequence of
messages exchanged.

e Collaboration diagrams show interactions organized around instances and their
links to each other.

e Statechart diagrams implement a state machine. They consist of hierarchy of
states and transitions between states both used to describe the internal behaviour of
system object. Statechart diagrams are widely used in the design and specification of
embedded systems (like ABS in cars, lift controllers, further machines with built-in
computers).

For defining the control of model transformation systems, statechart diagrams will
be discussed in details in the following. (See [17] to get a more detailed description
on the previous diagrams.)

State machines in UML statechart diagrams differ from classical statecharts (introduced
by Harel in [9]) in several ways [17].

23

24 CHAPTER 3. VISUAL CONTROL STRUCTURE IN UML

e At first, classical statecharts are meant to specify behaviours of processes, while UML
state machines primarily come to represent behaviour of a type.

e Harel’s statecharts have an elaborated set of predefined actions, conditions and events
which are not mandated by UML state machines.

e The notion of activities (processes) does not exist in UML state machines. Therefore
all predefined actions actions and events that deal with activities are not supported,
as well as the relationships between states and activities.

e (lassical statecharts are based on the zero-time assumption, meaning transitions
take zero time to execute. The whole system execution is based on synchronous
steps where each step produces new events that will be processed at the next step.

3.1.1 UML Specification of Model Transformation

As discussed in Chapter 2, the method of model transformation follows the paradigm of
graph transformation, which has been applied successfully in various (both theoretical and
practical) fields.

e Model transformation rules are a special form of graph transformation rules contain-
ing reference relation for coupling the source and target objects.

e As complex rule based systems of industrial relevance may contain hundreds of rules,
transformation units are adopted that allow the modular construction of a large set
of rules.

e The control flow of model transformation is described by extended regular expressions
providing a means for all major control flow operations.

A complex model transformation system should support the visual specification of
transformations as well. For this purpose, in VIATRA the visual notation of UML has
been overloaded [26] (forgetting about its original means to model software systems) as
existing graph transformation tools are insufficient for a fine—grained integration of MOF
metamodels and visual languages.

e The structure of transformation units is denoted by a cluster of UML packages with
special stereotypes.

e The objects in model transformation rules are depicted by classes with a stereotype
to their metaclass.

e The control conditions of transformation units are represented by UML statecharts,
naturally with certain restrictions.

As a result, the transformation designers may use their well-known UML CASE tools.
Therefore, during the specification of model transformation, only the visual syntax of
UML statecharts is used while its original semantics is omitted, i.e. the UML notation
and its original software modelling concepts are overloaded for the description of model
transformation systems. As a result, the visual construction of transformation units, rules
and control flow structures can be defined in an easy—to—understand UML notation.

There are several similarities between UML notation and control conditions in model
transformation units:

3.2. META OBJECT FACILITY 25

e In transformation units, control conditions are usually defined by extended regular
expressions (see Section 2.3.1). As regular expressions can easily be transformed
into a finite automaton, UML statecharts seem to provide the most suitable visual
notation for control conditions, due to the fact that they are a generalization of finite
automaton (supporting e.g. hierarchical behaviour).

e The dynamic internal behaviour of a class is described by UML statecharts, which
encapsulate the events and actions to which the class is sensitive. The control and in-
ternal operation of transformation units are characterized by a similar encapsulation,
i.e. representing the control flow by transitions between states.

As the structure of UML statecharts is usually defined by the standard UML metamodel
released by the Object Management Group on the basis of their Meta Object Facility
(MOF) standard, the next section contains a short introduction on the concepts of MOF
metamodelling (following basicly [25]).

3.2 Meta Object Facility

The concepts of metamodelling originate in the need for an effective design process of
formal specification and modelling languages. The large number of similar languages
— often supported nowadays by visual diagrams — necessitates a common description
language (called metameta—model later) that is able to describe the instances of these
languages as sentences. Traditionally, such a description is based upon a set of production
rules called a grammar.

However, the sentences of this top—level modelling language (called later as a model)
can be used for designing a lower level grammar for generating lower level languages hence a
model hierarchy is available in this sense with several meta—layers where the sentences
of a higher level language can be used for specifying a lower level language.

This hierarchy can be observed in Figure 3.1, and later demonstrated also in Table 3.1.

i+1)th metalevel Language A
i guag

ith metalevel # » Language B
P
(i-1)th metalevel

Figure 3.1: Meta-layers in language specification.

3.2.1 Basic MOF Notation

Metadata is a general term for data which in some sense describes a language, and usually
defined in the terms of the Meta Object Facility (MIOF) standard [19].

26 CHAPTER 3. VISUAL CONTROL STRUCTURE IN UML

In this MOF context, the term model has a broader meaning than in its general sense
(namely, description of something in the real world). Here, a model is a collection of
metadata that is related in the following ways:

e The collection of metadata describes information.

e All the metadata conforms to rules controlling its structure and consistency, i.e. it
has a common abstract syntax.

e The metadata has a meaning in a common semantic context.

Metadata itself is a kind of information, hence it can be described by metadata as well.
In the MOF terminology, metadata that describes metadata is called meta—metadata,
and the model that consists of a meta—metadata is called a metamodel. Metamodels are
integrated into a topmost level meta—metamodel, which is the MOF Model, by defining a
common syntax for the definition of several metamodel types.

The MOF metadata framework is typically depicted as a four layer architecture that
can be observed in Table 3.1.

Meta-level MOF terms Examples

M3 meta—metamodel The MOF Model

M2 meta-metadata GraTra metamodel
metamodel (interchange format)
metadata GraTra models,

M1
model e.g. a graph grammar

MO data modelled systems,

e.g. a graph

Table 3.1: MOF Metadata Architecture

3.2.2 The MOF Model

The MOF Model is an abstract language for defining MOF metamodels. Originally, it
was developed to provide a general means for describing the language constructs of UML.

Although MOF and UML was designed for different purpose (i.e. metadata versus
system modelling), the MOF Model and the core of the UML metamodel are closely related
in their modelling concepts (classes for objects of similar structure, associations as relations
between these classes, generalization, etc.); therefore, the corresponding UML notation is
commonly used for MOF-based metamodels as well. Nevertheless, in order to distinguish
between the metamodel elements of UML and the basic constructs of the MOF Model,
latter ones printed with capitals.

The main metadata modelling constructs provided by the MOF are the following:

e Classes are type descriptions of "first class instance” MOF meta—objects. Classes
defined at the M2 meta—level have their instances at the M1 level. The structural
features of Classes can be described at both object and class level by Attributes
(value holders in an instance of the class), Operations (specifying the name and
type signature by which the behaviour is invoked). Classes may also inherit their
structure and behaviour from other Classes by Generalization.

3.3. THE MOF METAMODEL OF UML STATECHARTS 27

e Associations support binary relations between Class instances. Fach Association
has two AssociationEnds that may specify aggregation semantics and structural
constraints on cardinality and uniqueness. When a Class is the type of an As-
sociationEnd, the Class may contain a Reference that allows navigability of the
Association’s links (i.e. Classes) from a Class instance.

e Packages are collections of related Classes and Associations. Packages can be com-
posed by importing other Packages by inheriting from them. They can also be nested,
which provides a form of information hiding.

e DataTypes allow the use of non—object types for Operation parameters and At-
tributes.

e Constraints are used to describe semantic restrictions on elements in a MOF meta-
model by defining well-formedness rules for the metadata described by a metamodel.
The Object Constraint Language (OCL) [20] is often used as a formal language
for expressing constraints.

A semi—formal description of the UML metamodel [17] (containing each of the more
than 120 pictorial objects) was released by the OMG using the constructs of the MOF
Model as a convincing demonstration that such a rich language as UML can be described
by a small subset of its own modelling language.

This section illustrated that the MOF Model provides a natural method to specify
and design various metamodels even in different levels of hierarchy. This visual language
is a well-defined subset of UML, the widely—known standard of object—oriented software
design, thus its modelling concepts can easily be understood in academic research as well
as in industrial applications.

In the current paper, UML statechart graphs serve as the basis of model transformation.
UML statechart graphs are simplified statecharts represented by model graph (see the
definition of model graphs in Section 2.1) with the following notation according to the
MOF metamodel of UML statechart (depicted in Fig. 3.3):

e classes are denoted as model graph nodes (having an identifier and a type),

e attributes are denoted as special model graph nodes, they are typed, have an iden-
tifier and serve as valueholders in the model,

e associations as graph edges typed by the corresponding reference names.

In the following, the features and components of UML statecharts will be described by
means of the standard MOF-based UML metamodel.

3.3 The MOF Metamodel of UML Statecharts

A UML statechart diagram shows the sequence of states that an object goes through
during its life in response to events from the surrounding, where states are represented by
state symbols and transitions are represented by arrows connecting these state symbols.
As hierarchy of states is available in statecharts, states may also contain subdiagrams by
physical containment and tiling.

28 CHAPTER 3. VISUAL CONTROL STRUCTURE IN UML
Composite state (L . Substate \
ERrr A) Active 4.--
imeout
dial digit(n)
after (15 sec.) W [incomplete]
after (15 sec
= DialTone dial digit(n) -
’ do/ play dial fone =>-| Dialing
lift dial digit(n)[invalid
receiver dial digit(n)[valid
/get dial tone Invalid \f!conne?ct [I
Edla State do/ play messagel Connecting I
~Even
}\ |Pir|ned' m busy ODnneLcted ent
Acallee do/ play bus; Iy
caller callee | - [hangs up < Transition
hanﬁg‘;s up answers f_V
.fdiscn'r;\necl V Ringing
L Talking callee answers of play ringing
Action fenable speech tone

- J

Figure 3.2: A UML Statechart

A sample diagram modelling the process of a telephone call is depicted in Figure 3.2.
The telephone is in an Idle state until one 1ifts the receiver. When the receiver is
lifted the telephone enters its Active state and plays a DialTone in the beginning. For
instance a telephone may get into a Dialing state from the DialTone state as a result of
an event called dial digit. This fact is indicated by a transition between the two states
labelled with the event.

The basic components of statecharts defined in the standard UML Metamodel in a
MOF notation [19] (in Fig. 3.3) are the following:

e A state machine is a behaviour that specifies the sequences of states that an ob-
ject goes through during its life in response to events, together with its response
and actions. The behaviour is specified as a traversal of a graph of a state nodes
interconnected by one or more joined transition arcs. The transitions are triggered
by series of event instances.

In the metamodel a StateMachine is composed of States and Transitions.

Assocations

— The context association links a StateMachine and its owning ModelElement,
whose behaviour is specified by the StateMachine. The ModelElement may
contain multiple StateMachines while each StateMachine is owned by one
ModelElement.

The top association denotes the top level State (exactly one as depicted by
multiplicity 1) directly owned by StateMachine. Other States are owned by
parent composite states. The rest of the StateMachine is an expansion of this
CompositeState.

The transitions associates the StateMachine with its Transitions. All
Transitions which are basicly relationships between States are owned by
StateMachine.

3.3. THE MOF METAMODEL OF UML STATECHARTS

+context ModelEement
(from Core)
0..1
|
* . Guard
StateMachine +statemachine
S
+behavior 0.1 +guard 0,,1
{} 0.1 +ransitions
+source +statgMachine +outgoing * ttransitionq 1

P - "

+substate [gitevertex 1.1]] * | Transiton |
1.1 +incoming * .
1. % rtransition

+target
+internalTransition
0.1
‘Ll +state
+top
PseudoState
State SignalEvent
#kind : PseudostateKind
Z} +stage,
+parent
0.1
p SimpleState + +ri r
CompositeState deferredEvent Event trigge
isConcurrent : Boolean
¢ 0..* 0..1

Figure 3.3: The MOF metamodel of UML statecharts

29

e A state vertex is an abstraction of a node in a statechart graph. In general, it can

be the source or destination of any number of transitions.

In the metamodel a StateVertex is a subclass of ModelElement.

Associations

— incoming specifies the transitions entering the vertex

— outgoing specifies the transitions having the vertex.

e A state is a condition or situation during the life of an object during which it satisfies
some condition, performs some action or waits for some events. A state models a
dynamic situation in which one or more conditions hold.

In the metamodel State is a subclass of StateVertex, thereby inheriting the funda-
mental features of incoming and outgoing transitions associated with state vertices.

Assocations

— internalTransition is an associated set of Transitions that occur entirely

within the Sta

te.

30

CHAPTER 3. VISUAL CONTROL STRUCTURE IN UML

— Another association is deferredEvent that specifies the Events to be deferred
if received within the State. Multiplicities ’0..*” indicates that a State can can
defer multiple Events, and an Event can be deferred by multiple States.

e A simple state is a state that does not have subvertices.

In the metamodel a SimpleState is a subclass of State that does not have any
additional features.

A composite state is a state that consists of subvertices.

In the metamodel a CompositeState is a subclass of State that contains one or more
subvertices that are subtypes of StateVertex.

Assocations and attributes

— Its subvertex association denotes a set of States that constitute the subver-
tices of a CompositeState. KEach subvertex is uniquely owned by its parent
CompositeState.

— The isConcurrent attribute is a boolean value that specifies the decomposition
semantics: if this attribute is true, then the composite state is decomposed di-
rectly into two or more orthogonal conjunctive components (usually associated
with concurrent execution). If its value is false, then there are no direct orthog-
onal components in the composite state. This means that exactly one of the
subvertices can be active at a given instant (i.e. sequential execution).

A pseudostate is an abstraction of different types of nodes in the state machine
graph which represent transient points on transition paths from one state to an-
other. Pseudo states are usually used to construct complex transitions from simple
transitions.

In the metamodel a PseudoState is a subclass of StateVertex, which generalizes all
statechart nodes.

Attributes

— It possess the kind attribute that can be (e.g. initial, fork or branch to
determine the kind of the pseudostate.
FinalState is the point where the described flow must stop.
In the metamodel a FinalState is a subclass of State with the mentioned feature.
An event is the specification of an occurrence that has a location in time and space.

An instance of an event can lead to the activation of a behavioural feature in an
object.

In the metamodel an Event is a subclass of ModelElement and is a part of a
Transition that represents its trigger.
A signal event represents events that result from the reception of a signal.

In the metamodel SignalEvent is a subclass of Event.

3.4. CONTROL FLOW DESCRIPTION BY UML STATECHARTS 31

¢ A guard condition is a boolean expression that may be attached to a transition in
order to determine whether that transition is enabled or not.

In the metamodel Guard is a ModelElement so it can substituted in refined state
machines. Its expression attribute is a boolean expression which specifies the guard
condition.

e A transition is a relationship between a source state vertex and a target state
vertex.

In the metamodelTransition is a subclass of ModelElement that participates in
various relationships with other state machine metaclasses (by associations):

Assocations

— trigger specifies the single Event which activates it

— guard is a predicate that must evaluate to true at the instant the transition is
triggered

— source denotes the StateVertex affected by firing the Transition.

— target denotes the StateVertex that results from a firing of the Transition
when the StateMachine was originally in the source State. After the firing the
StateMachine is in the target State.

After having discussed the metamodel of UML statecharts we turn to the UML—based
visual control flow representation of transformation units.

3.4 Control Flow Description by UML Statecharts

Due to the similarities between UML notation and control conditions in model transforma-
tion units (see Section 3.1.1), the visual notation of control flow structures will be described
in this section by means of the syntax of UML statecharts [26].

Due to the fact that UML statecharts are a generalization of finite automaton (support-
ing e.g. hierarchical behaviour), the control structures could be encoded into statecharts
by extended regular expressions (discussed in Section 2.3.1) according to the assignment
described in Table 3.2.

To demonstrate the encoding, a sample about the controlling of the model transforma-
tion (i.e. the control flow) is depicted in Fig. 3.4. This figure represents a simplified UML
statechart (see Section 3.3 about the features of the UML Statecharts) which describes the
control condition of the transformation unit um12imTU (shown in Fig. 2.6) by means of the
statecharts.

In the control flow statechart,

e cach rule and imported transformation unit are referred in the statechart dia-
gram as a simple state.

e Initial and final states are used to indicate where the execution should be started
and finished.

e Transitions without trigger denote the concatenation control condition, the self—
transition with a trigger “I” identifies the as long as possible semantics of a rule or
transformation unit.

32 CHAPTER 3. VISUAL CONTROL STRUCTURE IN UML

‘ Regular expression ‘ Statechart notation ‘

concatenation (;) transitions connecting their
source and target states

as long as possible (!) self-transitions with “I” as Sig-
nalEvent

fork (|) synchronization bar (Pseu-
dostate of kind “Fork”)

if-then—else decision cube (Pseudostate of
kind “Branch”))

logical condition guarded transition (conditions
are contained by Guards)

Table 3.2: From regular expressions to statecharts

e Synchronization bars (special pseudo states in UML) are used for depicting the
fork operation in the control flow (the join operation is implemented by the final
state), and

e the if-then—else structure (performing a branch in the control flow) is shown by a
decision cube (also a pseudo state in UML) and guarded transitions containing a
logical condition that has to be fulfilled for firing the given transition.

The operation of the depicted statechart is equivalent to the control of the transfor-
mation unit um12imTU. For a short reminder, the rules, the imported transformation units
and the control of the transformation unit was the following:

e rules: variantR, rule_ A, rule B
e uses: ftsTU linkTU
e control: ftsTU; (((variantR!); linkTU) | if ¢ then rule A else rule B)

The first step is the application of £tsTU as well as in the control of the transformation
unit um12imTU. Considering the correspondence between the statechart notation and the
semantics of extended regular expressions in the Table 3.2 according to the transformation
unit um12imTU and the statechart in Fig. 3.4, their equivalence is easy to be verified.

According to the technological process of model transformation (discussed in Chap-
ter 1), the UML statecharts created by a specific CASE tool are exported into an XMI
model format. This XMI description is later processed by a parser in order to automatically
generate the corresponding graph model (the algorithm is defined in [28]).

This graph model (called UML statechart graph) serves as the input of the model
transformation described in Chapter 5.

As an example, the corresponding statechart graph of Figure 3.4 is given in Figure 3.5
(later in Chapter 5 this graph will be transformed into the CFG graph of Fig. 5.23).

3.5 Conclusion

This chapter provided an introduction to several method widely used in the design process
of complex IT systems. We summarized the basic notation of UML statecharts and the

3.5. CONCLUSION 33

S !

<<TU>> <<rule>> ; <<TU>>
ftsTU variantR linkTU

<<rule>>
Rule_A .
= Final

<<rule>>
Rule_B

Figure 3.4: Statechart of the control flow

major concepts of MOF metamodelling. By overloading and restricting the visual notation
of UML statecharts, an easy to understand but mathematically precise formalism was
discussed as visual control specification method for model transformation systems.

The following chapters are concerned with the specification of a complex model trans-
formation from this UML statechart control specification to an appropriate algorithm in
Prolog. Each specification start from the description of the source and target metamodels
(in a MOF notation) while the process of transformation will be described by well-formed
model transformation rules. With this respect, components (i.e. the automated transfor-
mation of control specifications) of a complex model transformation system are also defined
by using the method of model transformation.

To generate the algorithm of the control flow, the first step is to describe the control
flow by UML statechart, then it has to be transform to other models in order to get the
final, language specific graph model.

34 CHAPTER 3. VISUAL CONTROL STRUCTURE IN UML

<CompS> <Value>
kind cl
pl

"uml2im"

"Fork"

“Rule B"

"Elsg”

Figure 3.5: The UML statechart graph of Control Flow

Chapter 4

From UML Statecharts to Prolog
Code: An Overview

As described in Chapter 3, the control flow in model transformation units is specified
in a high abstraction level visual modelling language (i.e UML statecharts) to avoid the
use of an entirely new mathematical method or a purely textual (and thus lower level)
programming language.

We also discussed in Chapter 1 that Prolog was chosen for the target language of im-
plementation due to its powerful unification method exploited in an efficient graph pattern
matching for model transformation rules. Although Prolog is considered to be one of the
highest abstraction level programming languages (as using logic for programming), it still
does not reach the abstraction level of a 4GL' visual language like UML.

As a result, an automated algorithm generation has to bridge a huge abstraction gap
between a visual and a textual language. As a consequence, we have chosen to divide the
entire transformation from UML statecharts to executable Prolog code into three distinct
phases.

e At first, an abstract model representing the control flow in a general way is generated
from UML statechart graphs. This abstract model called Control Flow Graph
(CFG) is a well-known and commonly used construct to describe the flow of control
(e.g. widely used by compilers for code optimization). In the current paper, an own
version of CFGs is adapted, described in Chapter 5 together with its projection from
UML statechart graphs.

e At a second step (see Chapter 6), a Prolog code specific (PC) graph model is
derived from the CFG model that is closely related to the final executable Prolog
code. The reason for this second intermediate model is a farsighted design deci-
sion aiming to use a general code generation algorithm for different programming
languages.

e Finally (in Chapter 7), a simple algorithm traverses the Prolog code graph and prints
the syntactic elements attached to nodes and edges.

We would like to emphasize that although the current paper only discusses the gener-
ation of an executable Prolog code, the method applied for the transformation process is

!Fourth Generation Language

35

36 CHAPTER 4. FROM UML STATECHARTS TO PROLOG CODE

so general that arbitrary target programming languages could have been chosen including
object-oriented (e.g. Java or C++) or functional languages (e.g. Standard ML) as well.

4.1 Basic Assignments

As we discussed previously in Chapter 1, the main task of the current paper is to generate
an appropriate algorithm implementing the control flow of transformation units. Thus,
function calls to transformation rules or units are handled as atomic, disregarding from
the implementation of these constructs.

The basic concepts of the overall transformation are summarized in figures 4.1 — 4.5.

e Function calls: in our case, function calls represent a call for a rule or for a trans-
formation unit.

UML Function calls refer to transformation rules and transformation units as sim-
ple states in UML statecharts. As depicted in the Figure 4.1, the state of the
UML statechart calls a transformation rule called rule_A.

CFG Atomic constructs are represented in CFG model as CFG nodes coupled with
their name by which the referred transformation rule or transformation unit can
be executed like a function call.

Prolog In Prolog code, function (or rather predicate) calls are related to the con-
nected functions by its name: the execution of a function is called in Prolog by
its name properly placed in the code (rule_A).

e Sequential execution as the default control flow element.

UML A transition from one state to another state is depicted in Figure 4.2 and
represents the execution of these states in the given order (indicated by the
direction of the arrow between the two states): at first rule_A, then rule_B.

CFG In CFG model, next edges determine the flow of the process calling functions
one after the other.

Prolog The sequential execution of function calls are separated by commas (¢,?)
in Prolog, e.g. rule_A, rule_B.

e Loop: repeat the current step (in our case the execution of a rule or a transformation
unit) as long as possible.

UML UML statecharts denote the as long as possible execution of a states (in
Figure 4.3) rule_A by self-transitions triggered by ‘!’ (the notion of
the as long as possible execution in regular expressions) connected to the current
state.

CFG A node with a Loop type and a loop edge, which has the same source and
target node: this Loop node, refers to a loop in order to execute the call of the
corresponding function (rule_A) until it is executable (e.g. applying a trans-
formation rule to a source graph until it has a matching occurrence determined
by rule_A).

4.1. BASIC ASSIGNMENTS 37

Prolog The corresponding Prolog code consists of two functions. They perform the
as long as possible execution of rule_A by means of ‘fail’ built-in syntactical
predicate in Prolog, and the repeating call of the containing function fun_A (an
artifical function to process these five structures, which is neither a rule nor a
transformation unit) (for details see Section 6.1).

e Branch: if-then—else structures

UML Branch constructs are represented in UML statecharts by decision cube —
holding the conditions for conditional threads, i.e. ‘Else‘ for another thread
showing the direction of the process if the evaluation of the condition is true,
i.e. false.

CFG In the intermediate model, branches are shown as Branch nodes having with
Conditional and Else types as their subsequent nodes, to which the appropri-
ate conditions (in Figure 4.4: cond) are assigned.

Prolog Another syntactical built—in symbol is ¢!’ the cut symbol in Prolog. In
our sample, fun_X calls fun_A function (after the execution of rule_A). Fun_A
(neither a rule nor a transformation unit) represents a conditional thread with
a cut at the choice points. In case of unsuccessful pattern matching of cond the
execution leaves this thread and continues at the function with the same name
(fun_A indicated the else thread of the branch).

e Fork: the subsequent instructions, operations, etc. can be executed parallelly (or
non—deterministically).

UML This non-deterministic choice is represented in UML statecharts by
synchronization bars (in Figure 4.5): after the execution of rule_A, the pro-
cess can be continued by calling either rule_B or rule_C.

CFG The node with the Fork type denotes this parallelly execution in CFG model.
The next edges show the possible parallelly execution of rules rule_B and
rule_C there are no differences between threads.

Prolog When Prolog calls fun_A both predicates rule_B and rule_C can be exe-
cuted by backtracking through the choice point.

In the following chapter, the concepts of the transformation from UML statechart
graphs to Control Flow Graph (CFG) will be discussed.

1 <CFG> 1
| |
| |
1 1
UML CFG Prolog

Figure 4.1: Transformation of Function calls

38

CHAPTER 4. FROM UML STATECHARTS TO PROLOG CODE

l <CFG> l
e A l . rule_ A,
e | . rule B
l l
| |
| next |
| |
rule B 1 @ |
| |
| <CFG> |
UML CFG Prolog

fun A:-

CFG

Prolog

o A : <CEG> 1fun_X:-
rule_. : | rule_A,
| r fun_A
| Lnext ' fun A
| <Brinch> L=
| ' cond, !,
CO:V \Else | ' rule_B
| - fun_A:-
I | N
rule_B } [rule_C } ' <Cond>tfext MKE|58> L
i . - rule_C
| next nex 1
| |
| <CFG> <CFG> |
UML CFG Prolog

Figure 4.4: Transformation of Branch structure

4.1. BASIC ASSIGNMENTS

E rule_B

UML CFG Prolog

Figure 4.5: Transformation of Fork structure

39

40

CHAPTER 4. FROM UML STATECHARTS TO PROLOG CODE

Chapter 5

From UML Statechart Graphs to
Control Flow Models

Control flow graphs are widely used in several fields of computer science. Several nodes in
the control flow graph represent computations and the edges represent the flow of control.
Thus providing an internal abstraction level between high— and low-level specifications.
For instance, in case of compilation [2] is control flow graphs represents the conditional
and unconditional jumps between basic blocks of statements. A similar flow graph is used
for performing structural tests on programs.

In a model transformation sense, control flow graphs are typed an directed graphs
representing the following types of programming elements:

e Function calls represent a call for a rule or for a transformation unit.
e Branch: if-then—else structures

Fork: the subsequent instructions, operations, etc. can be executed parallelly (or

non—deterministically)
e Loop: repeat the current step (operation) as long as possible;

e Sequential execution as the default control flow element.

As discussed in Chapter 4, the generation of the algorithm for control of model trans-
formation is carried out in two steps from its UML statechart specification to the final
language specific model graph. The first transformation is carried out from UML state-
charts to a Control Flow Graph (CFG model) model which provides an internal abstraction
level of control by means of basic programming elements.

5.1 The MOF Metamodel of Control Flow Graph

The previous concepts are defined by the MOF metamodel of Control Flow Graphs (de-
picted in Fig. 5.1) in the following way.

e Fun node denotes a function (referring to the application of a rule or a transformation
unit), and each of them has a name (connecting to a Value node with a name edge)
and may have several ContentNodes linked by content edges (for collecting nodes
that belong to a specific function).

41

CHAPTER 5. FROM UML STATECHARTS TO CFG MODELS

Fun +eontent| contentNode
Initial *next | Eipal
+name
next +next
Value
&value +next Internal |
ame 7<}\ Fork
+name
+cond v\
Branch
CFGNode Cond LoopNode | *loop Else

Figure 5.1: The MOF metamodel of the CFG intermediate model

e ContentNode is abstract, it is instantiated into either an Initial, Final or Internal
node. Initial node represents the starting point while Final node refers to the final
point of the execution for the function which contains them.

e The abstract Internal node can be either a CFGNode, Condition, Branch, Fork or
Else node.

— Each CFGNode refers to a rule or transformation unit in the original model
(see Section 3.4 and the corresponding rule in Fig. 5.4), and has a name as an
attribute.

— LoopNodes refer to a rule or transformation unit by name, and the connected
loop edge requires its application as long as possible.

— Branch nodes represent a conditional branching of execution, and may have
several next nodes: Cond and Else nodes. If the corresponding value of a Cond
node evaluates to true, the next step is defined by the node subsequent to Cond.
If there does not exist any true conditions related to a Branch, the next step is
defined by an appropriate Else node.

— A Condition node contains a logical condition (connected to a Value node with
a cond edge).

— Fork nodes have more than one next nodes originated from them, specifying
that its subsequent nodes can be applied parallelly (non-deterministically).

e Value nodes have an attribute serving as a value holder.

e next edges can lead in the denoted way between Fun and content nodes with some
restrictions in multiplicities.

5.2. TRANSFORMATION TO THE CFG MODEL 43

Multiplication restrictions of edges:

e Fach Fun node must have at least two content nodes: an Initial and a Final node
(exactly one of each).

e More than one next edge can leave from Fork and Branch nodes.

e Each Initial node must have one outgoing next edge (and has no incoming next
edge).

e Each Final node has only incoming next edges (at least one).

e A Branch node may have at most one Else and at least one Condition node con-
nected by a next edge; Condition and Else nodes may only have their incoming
next edges from Branch nodes. These thread nodes have exactly one outgoing next
edge.

e From each Fork node, at least two next edges leave.
e Value nodes have no outgoing edges.
e Only LoopNodes may have a next edge to themselves.

The described features, restrictions and properties of the CFG intermediate model are
straight consequences of the basic programming concepts. In the next section, the model
transformation rules of the transformation from UML statechart graphs to the CFG model
will be introduced in details. The correspondence between UML statecharts and UML
statechart graphs is discussed in details in Section 3.2.2, and shown in Fig. 3.4 and 5.23.
In the following, the notion of UML statechart will always refer to a UML statechart graph.

5.2 Transformation to the CFG Model

The model graph transformation from UML statechart graphs to the corresponding CFG
model consists of the application of several model transformation rules. These rules fulfil
the notation and execution concepts introduced in Section 2.2 and will be applied to the
UML statechart of described in Fig. 3.4 in order to obtain a CFG model (Figure 5.23 shows
the resulted CFG model).

Some observation are listed in order to understand the notation of an instance of CFG
model:

e At the beginning the CFG model is empty.

e Each elements (nodes) in both models have an ID (identifier) depicted in the
centre of the node.

e Some abbreviations are used for the notation of the nodes and edges in both models.

e The type of the nodes (the name of the comprising class) is printed in the rules in
<> and begins with a capital letter.

e The type of the edges is printed non—capital letters above the arrows.
e The data of a value to its <Value> node is place outside the node.

e The notation of the UML statechart are written with typewriter letters, the
constructs of the target model (CFG) are written in bold italics, and types of
reference nodes between the two models are typed with sans serif fonts.

44 CHAPTER 5. FROM UML STATECHARTS TO CFG MODELS

The flow of the transformation The transformation between the two model uses all of
the described rules. The steps of the transformation are carried out in the introduced order
of the rules (each rule must fulfil the "as long as possible" semantics of rule applications).

In order to help tracing the process of the transformation, an instance CFG graph
(transformed from a UML statechart graph, shown in Fig. 3.5) is provided after each
transformation rule illustrating the current state of the transformation emphasizing the
effects of the latest rule by gray scale nodes and bold edges. The Prolog implementation
of these transformation rules are listed in Appendix A.1.

5.2.1 State Rules

In the following rules, some special correspondences used to couple source and target ob-
jects are represented by the reference relation SubRef. When a rule has already been applied
to a sub-statechart this fact is denoted by reference edges connected to the appropriate
reference nodes.

RuleCompositeState This rule (Fig. 5.2) transforms a CompositeState with a name
to a Fun node with the similar name (connected by a name edge to a Value node). As
a result, the Fun node indicated by gray scale is generated in Fig. 5.3.

<CompS> <value>

<Fun>i

<Valuep

name,

: | name, Lo
<CompS> <Value> | @ . -
@%ame B S S
<SubRef>

Refl

Right - Target

Left - Source Left - Target

Right - Source

Figure 5.2: Rule of CompositeState nodes (RuleCS)

<Fun> <Vaue>
()=

"uml2im"

Figure 5.3: RuleCS results

5.2. TRANSFORMATION TO THE CFG MODEL

RuleSimpleState By applying rule RuleSS (Fig. 5.4), a SimpleState and its name is
transformed to a corresponding CFG node by SubRef reference node and a Value node
which holds the name.

—p |

~
~

Left - Source

Left - Target

<SimpS> <Value>

<SimpS> <Value> @
o=0}

<CFG> <Values

Ogt

‘

<SubRef>
Refl

Right - Source

Figure 5.4: Rule of SimpleState (RuleSS)

Right - Target

<Fun> <Value>
(1)

"uml2im"

<Vaue>
name

' ‘ <CEG> <Vaue>
<CFG> "ftSTU" name
<CEG>

name <Value>

Rame

ue>

<Vaue>

"Rule A"

<CFG>/ 'Rule B"

@ name

"linkTU"

Figure 5.5: RuleSS results

46 CHAPTER 5. FROM UML STATECHARTS TO CFG MODELS

Rules of PseudoStates PseudoStates Branch, Fork, and Initial in UML Statechart
must be transformed (the rules RuleBranch, RuleFork and Rulelnitial are depicted
in Fig. 5.6, 5.8, 5.9) to typed nodes Branch, Fork and Initial nodes respectively, i.e.
these rules simplify the notation (in the corresponding figures showing the results (Fig. 5.7
and 5.10) the process of rule application can be followed).

<PseudoS><VaIue> 3 <Branch>

| kind |
<PseudoS><Value> ; : 3
@%md e —> ~L Branch § e

"Branch" § <SubRef>
: Refl

Left - Source Left - Target Right - Source Right - Target

Figure 5.6: Rule of PseudoState Branch (RuleBranch)

<Fun> <Value>

"uml2im"

<Value>
=
<CEG> <Value>
<CFG> "ftSTU" name
<CEG>
e "linkTU"

Figure 5.7: RuleBranch results

5.2. TRANSFORMATION TO THE CFG MODEL

Rulelnitial

<PseudoS><Value>

B0

"Fork"

Left - Source

Left -

Target

47

The rule handling the Initial node is depicted below.

<PseudoS><Value> :

o208

 Fork j T :

<SubRef>
Refl

Right - Target

Right - Source

Figure 5.8: Rule of PseudoState Fork (RuleFork)

"Initial"

<PseudoS> <Va|ue>
° kind e

Left - Source

Left - Target

—>|

<SubRef>
Refl

- \

<PS'73’l’17d°9><v.alue> PN
S nitial i ;

Right - Source Right - Target

Figure 5.9: Rule of PseudoState Initial (Rulelnitial)

<Fun> <Valye>
name
"uml2im®
<CEG> <Value>
(=t
"linkTU"

Figure 5.10: Rulelnitial results

48 CHAPTER 5. FROM UML STATECHARTS TO CFG MODELS

RuleFinal FinalStates are transformed into Final nodes keeping its functionality, i.e.
this state denotes the end of the process (see Fig. 5.11).

<SubRef>
3 Refl
<FinalState> § ‘,,/” N
@ ——)p | <FinalState> : *;<Final>;
Left - Source Left - Target j
Right - Source Right - Target

Figure 5.11: Rule of FinalState (RuleFinal)

- <Fun> <Value>
<Initial> @ name

"uml2im"

<Vaue>
(5
<CEG> <Vaue>
<CFG> "ftSTU" name
<CEG>
@ "linkTU"

<Final>

Figure 5.12: RuleFinal results

5.2. TRANSFORMATION TO THE CFG MODEL 49

5.2.2 Edge Rules

RuleSubvertex As can be seen in the MOF metamodel of UML statecharts (in Fig. 3.3),
CompositeStates have subvertices. The appropriate notion (depicted in Fig. 5.13) in
CFG model is that Fun nodes connect to their "subnodes" by content edges.

<SubRef> <SubRef>
RAefl Rﬂefl

N N

Left - Source Left - Target Right - Source Right - Target

Figure 5.13: Rule of subvertex edge (RuleSubvertex)

. <Fun> <Vaue>
<Initial> name

() OSa9)

<Value>
@ name
<CEG> <Value>
<CFG> "ftsTU" name
<CEG> h
e “linkTU"

<Final>

Figure 5.14: RuleSubvertex results

50 CHAPTER 5. FROM UML STATECHARTS TO CFG MODELS

RuleTrans The transition from a source vertex to a target vertex is represented in
UML statechart graphs by a Transition statechart node which connects the source vertex
to a source edge and to the target vertex to a target edge. RuleTrans transforms this
structure to a mext edge between the two corresponding (referred by SubRef references)
nodes in the target model.

<SubRef> <SubRef>
Rgfl Rgfl

\

\

Left - Source Left - Target Right - Source Right - Target

Figure 5.15: Rule of transition (RuleTrans)

- <Fun> <Value>
<Initial> name
f1l
nl

_/ "umi2im”
hext
~ <Value>
cl name
. <CEG> <Value>
CFG> "ftsTU" name
<CEG> a

"linkTU"

"variantR"

<CEG>

ame next
s)

Figure 5.16: RuleTrans results

5.2. TRANSFORMATION TO THE CFG MODEL 51

RuleLoop Asshown in Table 3.2, transitions can be triggered by a SignalEvent. Empty
trigger denotes the sequential execution of the source and target vertex, while *’!”
denotes the as long as possible execution, which is related to self-transitions.

As the default control flow element is sequential execution, the self-transition is trans-
formed to a LoopNode notion instead of CFGNode and loop edge instead of next edge,
according to the naming of the programming element (see in Fig. 5.17).

<SubRef> <SubRef>
Re\fl Re\fl

- \ -

© § <Loop>

Left - Source Left - Target Right - Source Right - Target

Figure 5.17: Rule of self-transition (RuleLoop)

» <Fun> <Value>
<Initial> name
()

"uml2im"

<CEG> <Value>
| _name @
"linkTU"

<Fina>

Figure 5.18: RuleLoop results

52 CHAPTER 5. FROM UML STATECHARTS TO CFG MODELS

Transformation of branches The if-then—else structure is represented in UML state-
charts graphs by guarded transitions, i.e. values are connected to Transitions by Guard
and Value nodes. In case of conditional threads, a logical expression Cond is held by the
Value node, in other case Value node holds ¢‘Else’’.

<SubRef> <SubRef>
Refl Refl

Left - Source Left - Target Right - Source Right - Target

Figure 5.19: Rule of conditions (RuleCond)

Rules of guarded transitions The guarded transitions are already transformed into a
next edge in CFG model between the transformed source and target nodes (denoted by
SubRef). During the application of the related rules (represented in Fig. 5.19 and 5.21),

» <Fun> <Value>
<Initial> name
()

"uml2im"

<CEG> <Value>
| _name @
"linkTU"

next loop "variantR"

next

<Fina>

<CEG>

Figure 5.20: RuleCond results

5.2. TRANSFORMATION TO THE CFG MODEL 53

the subsequent node (denoted by next in the left target side edge) will be reachable only
through a Condition or an Else node by next edges, and Condition node get a Value
node which holds the logical expressions Cond.

Please note that a Branch may have several conditional threads (at least one) and at
most one Else thread.

[P

<SubRef> <SubRef>
Rejl Rejl

Left - Source Left - Target Right - Source Right - Target

Figure 5.21: Rule of else structure (RuleElse)

» <Fun> <Value>
<Initial> @ hame
() -

nl
/ "uml2im"
next

<Value>
.
cl name

<Vaue>
CFG> "ftsTU" name
<Loop> e

“Rule A"

"c==true"
<CFG>, " RU' e_B"

name

Figure 5.22: RuleElse results

54

CHAPTER 5. FROM UML STATECHARTS TO CFG MODELS

. <Fun> <Value>
<Initia> name
() 0

R name YA
cl

"uml2im"

. <CFG> <Vaue>
‘\CFG> "ftSTU" narT]e
next <L 0p>/ne>ét/ q

- - "linkTU"

<Final>

"Rule A"

"c==true"

<CEG>"Rule B"

name

Figure 5.23: The result of the transformation from the statechart graph of Control Flow

Chapter 6

From Control Flow Graphs to Prolog
Code Models

The second step of the transformation from UML statecharts to a model of executable
Prolog code is performed from CFG models to the Prolog code model. The structure of
the intermediate model (CFG model) may serve as a basis for the model of any program-
ming languages as containing all the abstract programming constructs of control flow (see
Section 5.1).

This second phase, i.e. the final Prolog graph of the transformation supports the
implementation (code—writing) of transformation’s control flow in the target programming
language. In our case, Prolog was chosen for this target language, which is introduced in
the sequel according to [11].

6.1 A Short Introduction to Prolog

Prolog is a simple but powerful programming language developed at the University of
Marseilles [23], as a practical tool for programming in logic [12]. From a user’s point of
view the major attraction of the language is ease of programming. Clear, readable, concise
programs can be written quickly with few errors.

6.1.1 Informal Introduction to Prolog Programs

A fundamental unit of a logic program is the goal or procedure call. e.g. gives(tom,
apple, teacher) reverse([1,2,3], L) X<Y.

A goal is merely a special kind of term, distinguished only by the context in which it
appears in the program. The (principal) functor of a goal identifies what predicate the
goal is for. It corresponds roughly to a verb in natural language, or to a procedure name
in a conventional programming language.

A logic program consists simply of a sequence of statements called sentences, which are
analogous to sentences of natural language. A sentence comprises a head and a body. The
head either consists of a single goal or is empty. The body consists of a sequence of zero
or more goals (i.e. it too may be empty). If the head is non—empty, the sentence is called
a clause.

If the body of a clause is empty, the clause is called a unit clause, and is written in the
form

25

56 CHAPTER 6. FROM CFG TO PROLOG CODE MODELS

P.

where P is the head goal. We interpret this declaratively as “Goals matching P are true”
and procedurally as “Goals matching P are satisfied.”

If the body of a clause is non-empty, the clause is called a non-unit clause, and is
written in the form

P:-Q, R, S.

where P is the head goal and Q, R and S are the goals which make up the body. We
can read such a clause either declaratively as “P is true if Q and R and S are true”, or
procedurally as “To satisfy goal P, satisfy goals @), R and S.”

A sentence with an empty head is called a directive , of which the most important kind
is called a query and is written in the form

?- P, Q.

where P and Q are the goals of the body. Such a query is read declaratively as “Are P and
Q true?” and procedurally as “Satisfy goals P and Q).”

Sentences generally contain variables. Note that wvariables in different sentences are
completely independent, even if they have the same name, i.e. the lexical scope of a variable
is limited to a single sentence. Each distinct variable in a sentence should be interpreted
as standing for an arbitrary entity, or value. To illustrate this, here are some examples of
sentences containing variables, with possible declarative and procedural readings:

1. employed(X) :- employs(Y,X).

o “Any X is employed if any Y employs X.”
e “To find whether a person X is employed, find whether any Y employs X.”

2. derivative(X,X,1).

e “For any X, the deriwative of X with respect to X is 1.”

o “The goal of finding a derivative for the expression X with respect to X itself is
satisfied by the result 1.7

3. ?7- ungulate(X), aquatic(X).

o “Is it true, for any X, that X is an ungulate and X is aquatic?”

o “Find an X which is both an ungulate and aquatic.”

In any program, the predicate for a particular (principal) functor is the sequence of
clauses in the program whose head goals have that principal functor. For example, the
predicate for a 3-ary functor concatenate/3 might well consist of the two clauses

concatenate([], L, L).
concatenate ([X|L1], L2, [X|L3]) :- concatenate(L1, L2, L3).

where concatenate(L1,L2,L3) means “the list L1 concatenated with the list L2 is the list
L3”. Note that for predicates with clauses corresponding to a base case and a recursive
case, the preferred style is to write the base case clause first.

In Prolog, several predicates may have the same name but different arities. Therefore,
when it is important to specify a predicate unambiguously, the form name/arity is used;
e.g. concatenate/3.

6.1. A SHORT INTRODUCTION TO PROLOG o7

6.1.2 Procedural Semantics of Prolog

The procedural semantics of Prolog defines exactly how the Prolog system will execute
a goal, and the sequencing information is the means by which the Prolog programmer
directs the system to execute the program in a sensible way. The effect of executing a goal
is to enumerate, one by one, its true instances. Here then is an informal definition of the
procedural semantics. The semantics is illustrated by the simple query

?- concatenate(X, Y, [a,b]).

We find that it matches the head of the first clause for concatenate/3, with X instan-
tiated to [alX1]. The new variable X1 is constrained by the new query produced, which
contains a single recursive procedure call:

?- concatenate(X1, Y, [bl).

Again this goal matches the first clause, instantiating X1 to [b|X2], and yielding the
new query:

?- concatenate(X2, Y, [1)

Now the single goal will only match the second clause, instantiating both X2 and Y to [J.
Since there are no further goals to be executed, we have a solution

X
Y

[a,b]
0

i.e. a true instance of the original goal is
concatenate([a,b]l, [1, [a,bl)
If this solution is rejected, backtracking will generate the further solutions

X
X

[a] Y = [b]
(Y= [a,b]

in that order, by re-matching, against the second clause for concatenate, goals already
solved once using the first clause.
Thus, in the procedural semantics, the set of clauses

H :- Bl, ..., Bm.
H> :- B1’, ..., Bm’.

are regarded as a procedure definition for some predicate H, and in a query
?- G1, ..., Gn.

each Gi is regarded as a procedure call. To execute a query, the system selects a goal (e.g.
Gj) by its computation rule, and searches a clause whose head matches Gj by its search
rule. Matching is done by the unification algorithm (see [22]) which computes the most
general unifier (mgu), of Gj and H. The mgu is unique if it exists. If a match is found,
the current query is reduced to a new query

58 CHAPTER 6. FROM CFG TO PROLOG CODE MODELS

?- (Gt, ..., Gj-1, B, ..., Bm, Gj+1, ..., Gn)mgu.

and a new cycle is started. The execution terminates when the empty query has been
produced.

If there is no matching head for a goal, the execution backtracks to the most recent
successful match in an attempt to find an alternative match. If such a match is found, an
alternative new query is produced, and a new cycle is started.

6.1.3 Control Restrictions in Prolog

This section summarizes some basic control restrictions in Prolog, which is widely used
during the automatic Prolog code generation for model transformation systems.

Non—determinism in Prolog (Fork structures) Non-deterministic choices (i.e. dis-
junction) are implemented by extra predicates with the same head name but distinct bod-
ies. Each predicate can be executed sequentially by backtracking or parallelly in special
Prolog systems.

Example 6.1.1 The following example can be read as “For any X, Y and Z, X has Z as a
grandfather if Y is the parent of X (either a father or a mother), and the father of Y is Z.”

grandfather(X,Z) :-
parent (X,Y),
father(Y,Z).

parent (X,Y) :-
mother (X,Y).

parent (X,Y) :-
father (X,Y).

The Cut Symbol Besides the sequencing of goals and clauses, Prolog provides another
important facility for specifying control information, which is the cut symbol, written !.

The effect of the cut symbol is as follows. When first encountered as a goal, cut succeeds
immediately. If backtracking should later return to the cut, the effect is to fail the parent
goal, i.e. that goal which matched the head of the clause containing the cut, and caused the
clause to be activated. In other words, the cut operation commits the system to all choices
made since the parent goal was invoked, and causes other alternatives to be discarded.

The goals handled deterministically are the parent goal itself, any goals occurring before
the cut in the clause containing the cut, and any subgoals which were executed during the
execution of those preceding goals.

Example 6.1.2 In this ezample (which computes the absolute value Y of X), the call for
abs/2 will be executed exactly once.

abs(X, Y):-
X >=0, !,
Y is X.

abs(X, Y):-
X<O0,!,

Y is -1x*X.

6.2. MODEL TRANSFORMATION TO THE PROLOG CODE MODEL 59

If-Then—Else If-then-else statements take the form of

Head :- Ifi1, !, Thenl.

Head :- Ifm, !, Thenm.
Head :- Elsen.

i.e. they contain cuts and disjunctions. In this sense, if an Ifi goal succeeds, the non-
deterministic choice point placed on the Head predicate is removed.

As long as possible (Loops) In exhaustive searches through an entire state space or
in generate—and—trial type algorithms, all the data elements fulfilling special requirements
have to be enumerated one by one (and e.g printed as a side effect).

This can be achieved in Prolog by a call of the built—in predicate fail, which never
succeeds when set up as a goal. As a result, the control flow backtracks to the last choice
point to choose another match of predicates and instantiation of variables.

Example 6.1.3 This young_women predicate succeeds when all the women in the database,
whose age is less than 25 are printed (supposing that each woman has exactly one age).

young_women: -
woman (X) ,
age(X,Age),
Age < 25,
write(X),
fail.

young_women.

6.2 Model Transformation to the Prolog Code Model

The metamodel of the Prolog code model is resulted from the implementation of pro-
gramming elements in Prolog. The Prolog skeleton of the control elements (discussed in
Section 6.1) serves as a basis for understanding the main structure of the MOF metamodel.

6.2.1 The MOF Metamodel of the Prolog Code Model

These previous implementation structures are defined by the MOF metamodel of the Prolog
code model (depicted in Figure 6.1) in the following way.

The concept of the Prolog Code model The transformation from CFG model must
result in an instance of the target Prolog Code model, from which the description the cor-
responding Prolog code is easy to be generated. Such Prolog programs can be described
by sequences of predicate calls referred by a name (which can be in our case either names
of rules and transformation units, as well as generated predicate names referring to con-
trol structures) and built—in syntactical constructs represented by pure textual elements
(between quotation marks), like -7, ‘I’ “fail’, ‘nl’ (newline), ‘,’, and ..
These elements in the metamodel are implemented in the following way.

60 CHAPTER 6. FROM CFG TO PROLOG CODE MODELS

Hname NamedElement | ThexXt
N Initial
End
+lastfu
CallFun —— = SubFun Fun
]
+nextran

Figure 6.1: The MOF metamodel of the Prolog code model

e NamedElement can be Fun, Initial, CallFun, SubFun and End. Each NamedElement
has a name connecting to a Value node with a name edge. These names can be
predicates, clauses or textual elements.

e Fun nodes denote the functions, i.e. the heads of predicates.

e Value node is valueholder. It can be either names of NamedElements (connected by
name edges) or a textual element (connected by next edges) of Prolog code.

e A next edge may have a value, which represents the concatenation of textual ele-
ments ‘,” (comma) and ‘nl’ (newline) to separate predicates and clauses in the se-

quential execution.

e End node denotes the final point of functions. This meaning is not denoted in the
class diagram: End nodes have only incoming next edges.

e Each element of model CFG is transformed to a CallFun node (except for Value
nodes) to emphasize the structure of Prolog programs that all the names refers to a
function call.

e In order to generate a code automatically, the representation of branches, forks and
loops requires the help of some additional nodes, such as SubFun and nextfun,
lastfun edges, which coordinate the execution order among the predicates with
the same head (like in branches, forks and loops structure — see Section 6.1.3.

e The named elements are connected to each other by next edges.

The following notations are used in the transformation (the notation of CFG model
instances can be seen in Section 5.2):

e The instance (target graph) of Prolog code model is empty at the beginning.
e Each node has an ID placed in the centre of the node.

e Some abbreviation are used for the notation in the target model.

6.2. MODEL TRANSFORMATION TO THE PROLOG CODE MODEL 61
e The type of nodes (the name of the comprising class) is printed in <> beginning
with capital letters.
e The type of edges is printed in non—capital letters placed above the arrows.
e The connected values to next edges are placed below the arrows.
e The value (usually a string or an integer) of a <Value> node is placed outside.

e The notation of the CFG model are written with typewriter letters, the letters
of notation of the target Prolog code model are referred by bold italic letters, and
types of reference nodes between the two models are typed with sans serif fonts.

In order to get a correct Prolog Code from model CFG, Refln and RefOut references
between the models are used to assign the corresponding nodes to denote the direction of
the execution. Refln refers to the incoming next edges, while RefOut nodes determine the
place of the outgoing next edges.

62 CHAPTER 6. FROM CFG TO PROLOG CODE MODELS

6.3 The Process of the Transformation

All the described rules between the two models are used by the transformation. The steps
of the transformation are carried out in the introduced order of rules (each rule must fulfil
the "as long as possible" semantics of rule applications).

In order to help tracing the process of the transformation, an instance Prolog Code
model (transformed from an instance of CFG model, depicted in Figure 5.22) graph is
provided after each transformation rule illustrating the current state of the transformation
emphasizing the effects of the latest rule by gray scale nodes and bold edges. In these
graphs, the connected values to the nodes are next to the node for the easier reading
and to reduce the complexity of the illustration. The Prolog implementation of these
transformation rules are listed in Appendix A.2.

6.3.1 Control Structure Rules

The nodes rules are the following, applied step by step to the instance of CFG model in
Figure 5.23 .

PCRuleFun (depicted in Fig. 6.2) The meaning of Fun node representation in CFG
model is equivalent to the concept of Fun node in the final model, therefore the application
of the rule results in the same notation (the rule transforms Fun node and its name to a
Fun node, a name edge and Value node with the same name value).

Ref
N - o Do A
<Fun> <Value> <Fun> <value> | <Fun> <Value>
name, ; | name S name
BEORNEN |~ Gl s =
N TN N e N
;
Left - Source Left - Target Refl
Right - Source Right - Target

Figure 6.2: Rule on Fun nodes (PCRuleFun)

<Fun>

uml2im

Figure 6.3: PCRuleFun results

6.3. THE PROCESS OF THE TRANSFORMATION 63

PCRuleCFG As the concept of functions does not change, the rule of CFG nodes (de-
picted in Fig. 6.4) retains CFG node and its name in an unaltered form.

Ref
<CFG> <Value> 3'<'(':'FGV>T <Value> | <CallFun> <Value>
name, name, D name
()mme) —> ()m(e) (r)*™o)
N ; N N e N
;
Left - Source Left - Target Refl
Right - Source Right - Target

Figure 6.4: Rule of CFG node (PCRuleCFQG)

<Fun>

umi2im

<CallFun>

ftsTU

<CallFun>

(=)

linkTU
<CallFun>

rule_ A

<CallFun>

rule B

Figure 6.5: PCRuleCFG results

64 CHAPTER 6. FROM CFG TO PROLOG CODE MODELS

PCRuleBranchIn A Branch node may have several conditional and else threads. Ac-
cording to our control flow graph model, these threads can continue through completely
different nodes, i.e. the execution determined by conditions must branch.

In order to get a correct code of branches in Prolog, the described structure of if-
then—else is created (see Section 6.1.2) by the introduction of novel nodes, CallFun with
a generated name genname(N) of the comprising Fun. This correspondence between
Branch node and CallFun determine a Refln reference, i.e. the node in model CFG,
which has the Branch node as its subsequent node, its corresponding node in Prolog Code
model must have CallFun as its subsequent node. As Branch may have several threads,
following the described structure of if-then—else in Prolog, the execution is ended by the
call of the generated function (represented with the End node).

<Fun> <Value> : <CallFun> <Value>
3 name | name
<Fun> <Value> : : :
N | gennarfe(N
content 4
N
content
| (o)~
e <Branch> ./ <End>
<Branch> N
?
Left - Source Left - Target Ref

Right - Source Right - Target

Figure 6.6: Rule of Branch node (PCRuleBranchln)

<Fun>
umi2im <CallFun>
<CalFun> linkTU
ftsTU
<End> <CalFun>
rue A
ne
<CadlFun>
<CalFun> ruI|=e B
uml2imO

Figure 6.7:

PCRuleBranchlIn results

6.3. THE PROCESS OF THE TRANSFORMATION 65

PCRuleForkIn The structure of forks is similar to branches’: several parallel threads
can lead from a fork but the order of their execution is arbitrary (and they have no
condition attached). Thus the transformation of forks is carried out by the separation of
these possible threads to different functions with the same name. The first step of this
procedure is the creation an end (with an End node) of the thread after the call of the new
function by CallFun node with a generated mame from the containing Fun (see Fig. 6.8).
To ensure the appropriate connections between the nodes, Refln reference is used for the
same purpose as in case of branches.

<Fun> <Value> | <CallFun® <Value>
3 name D name
<Fun> <Value> : b ;
name § N genname(N
3 |
N ‘
content ‘ —> | ;
: : N
Q ; <Fork>; '~ s <End>
<Fork> 1
?
Left - Source Left - Target Ref
Right - Source Right - Target
Figure 6.8: Rule of Fork node (PCRuleForkIn)
<Fun>
@uleim
<End>
<CallFun>
ftsTU
<CallFun>
<End> <CalFun>
umi2imi @
linkTU
<CallFun>
ne
rule_ A
<CalFun> <CadlFun>
uml2im0 rule B

Figure 6.9: PCRuleForkIn results

66

PCRuleLoop Loops are implemented in CFG model as a LoopNode with a loop edge.
In Prolog, loops are processed as function calls. In order to perform this requirement,
generated names (from the name of the LoopNode) are assigned to loops and these functions
(CallFun nodes) are called in the appropriate time (depicted in Fig. 6.10). The Refln and
RefOut references are used to transform the connected incoming and outgoing next edges
to the appropriate incoming and outgoing next edges between the corresponding nodes,

CHAPTER 6. FROM CFG TO PROLOG CODE MODELS

while RefLoop serves the correspondence between the LoopNode and CallFun.

<Value>
N
name

a loap

<Loop>

Left - Source

Left - Target

<Value>

- Ref2

<RefLoop>
Ref

<CallFun> <Value>
] . genname(N

Right - Source Right - Target

Figure 6.10: Rule of LoopNode (PCRuleLoop)

<Fun>
@uml 2im

<CalFun>

ftsTU

<CallFun>

uml2iml
nextfun

<End>

<CallFun>

uml2imO

@t :

<CallFun>

<CfG>

linkTU
<CalFun>
rule A
<CFG>
rule B

Figure 6.11: PCRuleLoop results

6.3. THE PROCESS OF THE TRANSFORMATION 67

PCRuleLoopFirst (depicted in Fig. 6.12) According to the structure of loops in Prolog,
the referring rules represent two functions with the same name (the name of the appropri-
ate CallFun, determined by RefLoop reference). The first function SubFun, connected
by nextfun edge to the referred CallFun node, contains the seed of the loop: the Call-
Fun node with the name of LoopNode name and the built—in syntactical element "fa:l"
(connected by a mame edge and a Value node, which holds the name of the rule or
transformation unit in the loop and the textual elements of Prolog) ensures the successful
execution of the loop.

<RefLoop>
Refl

<RefLoop>
R(Aefl

‘<Loop>:,’ ! §<CIIFun>: <Value>

Left - Source Left - Target

Right - Source Right - Target

Figure 6.12: Rule of loop to create the first function (PCRuleLoopFirst)

<Fun>
umi2im
<End>
<CallFun>
fisTU variantRO <SubFun> <Initial> <CalFun> <End>
<CallFun> @& next @ next next e
<CallFun> variantR0 [variantR fail]
uml2im1
<CallFun>
<End>
linkTU
<CallFun>
ney
rule A
<CallFun> <CallFun>
uml2im0 rie B

Figure 6.13: PCRuleLoopFirst results

68 CHAPTER 6. FROM CFG TO PROLOG CODE MODELS

PCRuleLoopLast The second function (see the rule in Fig. 6.14), SubFun, connected

by lastfun edge to the referred CallFun node, performs the end of the loop by representing
an empty predicate with the name of CallFun.

<ReflLoop>|
Refl
A
/o
,’/‘\%Ct]ﬁﬂhii <Value>
<ReflLoop> J/ - lastfur
Refl) | 2. <SwpbFun> <Value>
<CFG>. 3
SGEesT T \EGlus T <vaes| ___y, | @ |
§ s Y name : : N
| 1 b AN 52 R I next
""" | N .
<Inftial>
Left - Source Left - Target
next
<End>
Right - Source Right - Target

Figure 6.14: Rule of loop to create the last (second) function (PCRuleLoopLast)

<Fun> <Initial> <End>
next
) i3
uml2im
next
<End>
<SubFun>
6@
VariantRO
<CallFun>
lastfun
ftsTu variantRO <SubFun> <Initial> <CalFun> <End>
<CallFun> @% next @ next n@(t e
<CallFun> variantR0 [variantR fail]
uml2im1
<CalFun>
@
linkTU
<CallFun>
y (=)
rule A
<call F <CallFun>
uml2imO rie B

Figure 6.15: PCRuleLoopLast results

6.3. THE PROCESS OF THE TRANSFORMATION

PCRuleFinal

69

Final nodes denote the end point of a function in the source model,

which is represented in our Prolog code model by an End node. The rule of Final nodes
in Fig. 6.16 performs the conversion between Final and End nodes, and ensures the
correspondence of the connected nodes (by next edges) by means of Refln reference.

: <Final>
<Final> | i <End>
o —) @
] A
,,,,,,,,,,,,,,,,,,,,,,,,,,, L R
o
¥
:
Left - Source Left - Target Ref
Right - Source Right - Target
Figure 6.16: Rule of Final node (PCRuleFinal)
<Fun>
umli2im
<End>
<CdlFun>
fisTU varia <SubFun> <Initial> <CalFun> <End>
<CallFun> (> nextfun . next . next . next .
<CallFun> variantRO [variantR fail]
umi2iml
<CallFun> <End>
linkTU
<CallFun>
ne
rule_A
<CallFun> <CallFun>
uml2imO rule B

Figure 6.17: PCRuleFinal results

70

Rule of Initial nodes

CHAPTER 6. FROM CFG TO PROLOG CODE MODELS

In the CFG model, Initial nodes are connected by content
edges only to Fun nodes. The transformed Initial node represents the same functionality
in Prolog Code model, i.e. it shows the starting point of the related function (connected
by next edge to the corresponding Fun node). Refln and RefOut references ensure further

correspondence between the connected source and target nodes.

<Initial>

<RefOut>
Ref1

RN
L0

Left - Source

Left - Target

<RefOut>
Refl

<Réfoﬂt>
Ref3

Right - Source Right - Target

Figure 6.18: Rule of Initial node (PCRulelnitial)

A
\

Fun:

@uleim

nitial>

<End>

<CalFun>

uml2im0

<SubFun> <lnitial> <CalFun> <End>

(> nextfun . next . next . next .

<CalFun>

variantR0O [variantR,fail]
<CalFun> <End>
linkTU
<CallFun>
rule_ A
<CallFun>
rule B

Figure 6.19:

PCRulelnitial results

6.3. THE PROCESS OF THE TRANSFORMATION 71

PCRuleCond The rule of Cond nodes with its condition Cond (held by the connected
Value node) transforms them to a CallFun node, with the name Value, which holds
the condition and the corresponding built-in textual element of Prolog cut symbol (see
if-then-else structure in Prolog, Section 6.1.3). The Refln and RefOut serve for the correct
process of the control flow, determining the place of the previous and subsequent edges.

Refl
: S
<Cond> <Value> : :<Cond> <Value> : <callFun> <Value>
Cond B ‘\,:\ Cond [P ¥ [Cond,".1]
Left - Source Left - Target
Ref2
Right - Source Right - Target

Figure 6.20: Rule of Cond node (PCRuleCond)

<Fun> <Initj

@uml 2im

<SubFun> <lnitial> <CdlFun> <End>

. next . next . next .
[

<CalFun>

<CallFun> variantR0 variantR fail]
umi2iml
<CallFun> <End>
©
linkTU

<CallFun> <CalFun>

[c==true,!] rule_ A
<CallFun> <CallFun>
uml2imO rule B

Figure 6.21: PCRuleCond results

72 CHAPTER 6. FROM CFG TO PROLOG CODE MODELS

PCRuleElse The rule of Else nodes transforms them to a CallFun node, with the
name Value, which holds the corresponding built—in textual element of Prolog cut symbol
(see if-then—else structure in Prolog, Section 6.1.3). The Refln and RefOut determine the
correct process of the control flow.

Refl
,,,,,,, - \
<Else> <Else> . <CallFun> <Value>
— 0
) 'W"\:\ ’ []
Left - Source Left - Target
Ref2
Right - Source Right - Target
Figure 6.22: Rule of Else node (PCRuleElse)
<Fun>
@uleim
next
nitial> <End>
<CdlFun>
lastfun
ftsTU vatiantRO <SubFun> <lnitia> <CallFun> <End>
<CallFun> (> nextfun . next . next . next .
<CallFun> variantRO [variantR fail]
ml2im1
<CallFun> <End>
linkTU
<CalFun> <CallFun>
ne
[c==true,!] rule A
<CallFun> <CI Fun> <CalFun>
uml2imO [rule B

Figure 6.23: PCRuleElse results

6.3. THE PROCESS OF THE TRANSFORMATION 73

PCRuleForkOut In order to process the outgoing threads of forks, the functions with
the name of CallFuns are generated in the following way (in Rule 6.24): SubFun nodes
are added to the final graph with nextfun edges. By means of Fork nodes and Refln
references of its subsequent nodes (each already transformed node is in Refln reference),
the corresponding nodes can be connected to each other through an Initial node which
represents the beginning of SubFun.

Refl

A

R?fl S Y

a

*
Ref2 N
<Refin>
Left - Source Left - Target

Right - Source Right - Target

Figure 6.24: Rule of next edges to fork nodes (PCRuleForkOut)

ftsTU <Subfun> <Initial> vaiiantRO <SubFun> <Initial> <CalFun> <End>
<CallFun> next @ next, (",) nexttun @ next @ next @ hext @
Rexdl un 1 . .
umi2im1 <CallFun> variantR0 [variantR fail]
i uml2iml
nexun <CallFun> <End>
<Subfun> <End> @
() ©
uml2im1 linkTU
next
s{nitial> <CallFun> <CallFun>
i6
ni
next [c==true,!] rule A
<CdllFun: <C? Fun> <CallFun>
uml2imO 0 ru:l cB

Figure 6.25: PCRuleForkOut results

74 CHAPTER 6. FROM CFG TO PROLOG CODE MODELS

PCRuleBranchOutCond As can be seen in Section 6.1.3, an if-then—else structure is
implemented by separated predicates as functions. Conditional threads are transformed
into SubFun nodes and Initial nodes (denoting the beginning of the function), connected
by nextfun edges to the corresponding CallFun with the same name. These rules ensure
the correct place in the process of the outgoing next edges from the corresponding CallFun
node.

Refl
<Refln> J\ <CallFun>! <Value>

0
! '

\kCallFun> <Value>

name @

e

Ref2

Left - Source Left - Target
Ref2

Right - Source Right - Target

Figure 6.26: Rule assigning branches to conditional functions (PCRuleBranchOutCond)

it i <SubFun> <Initial> <CdlFun> <End>
<CallFun> 9 nextfun @ next @ next @next @

<CallFun> variantR0 [variantR fail]

nextfun <CallFun> <End>
linkTU

<CallFun> <CallFun>

[c==true,!] rule A

<CallFun: <CallFun> <CallFun>

uml2imO 1 rule B

Figure 6.27: PCRuleBranchOutCond results

6.3. THE PROCESS OF THE TRANSFORMATION 6]

PCRuleBranchElseCond The else thread of branches is transformed in a similar way.
According to the fact, that else thread does not have a condition, the corresponding func-
tion must be the last among the other function which are connected to the same branch
(by CallFun and its name). By the means of the lastfun edge, the algorithm generation
can calculate it last. The rest notation of the rule mean the same as in the previous rule.

[\ $CaliFin>t <Value>
Y

Refl name
A B
& /

an

|
Ref2 \
Ve
Left - Target
Ref2

Right - Source Right - Target

Left - Source

Figure 6.28: Rule assigning branches to its else function (pcRuleBranchOutElse)

uml2im
next
itial>
ftsTU <SubFun> <Initial> <CalFun> <End>
<CallFun> nextfun f4)next /|4\ next @next @
- : NG _/
@ umizim1 <callFun> variantRo [variantR fai
uml2iml
nextfun <CallFun> <End>
<Subfun> <End>
linkTU

<CallFun> <CallFun>

[c==true,!] rule A

next uml2imo
<CallFun <SubFun> <Initia> <CallFun> <CallFun>
== ©
uml2imO uml2im0 M rule B

Figure 6.29: PCRuleBranchOutElse results

76 CHAPTER 6. FROM CFG TO PROLOG CODE MODELS

PCRuleNext (depicted in Fig. 6.30) To transform next edges between the correspond-
ing (already transformed) nodes, Refln and RefOut references are used, where Refln refer-
ences are between the nodes which previous nodes are in a correspondence, while RefOut
reference assigns the nodes to the corresponding subsequent nodes. A next edge in model
CFG between two nodes is transformed to a next edge in Prolog Code model connecting
the referred nodes by the mentioned references.

Ref: Ref.

- s S ,,,4’/

next

] O ©
)

o
©

’
’

Left - Source Left - Target Right - Source Right - Target

Figure 6.30: Rule of next edges (PCRuleNext)

<Fun>
@uml 2im

next
nitial>

next VariantRO
<CalFun>

cl
<SubFun> <Initial> <CdlFun> <End>

next next next e

variantR0O [variantR fail]

uml2iml1

uml2iml
<CallFun> <End>

next

nextfun

<Subfun> <End>

()
uml2im1 linkTU

next

itial> <CalFun> <CallFun>
next @ next next
next uml2im0 [c==true,'] rule A
<CalFun ! <SubFun> <Initial> <CallFun> <CalFun>
@ next % next @ next @
uml2imo uml2im0 [rule B

Figure 6.31: PCRuleNext results

6.3. THE PROCESS OF THE TRANSFORMATION 7

6.3.2 Attaching Syntactic Elements

To support the code—writing, built—in textual elements of Prolog are connected by a name
edge to a Value node, which holds these elements, as in case of some rules in the previous
section (Section 6.3.1). In this section, textual elements are added to the instances of the
target model (such as sequential order, the beginning and the end of functions) .

PCRuleDots The end of a function in Prolog is denoted by a dot. To represent the end
of the functions, ‘.’ is added to End nodes (and an additional ‘nl’ newline to improve
legibility).

<End>

<End> : °

_». next

<Vglue>

| | [0l
Left - Source Left - Target Right - Source Right - Target

Figure 6.32: Punctuation for End of functions (PCRuleDots)

PCRuleComma The direction of the execution is represented in the final model by
next edges. In Prolog, predicates are separated by commas. This rule adds a ¢’ and a
‘nl’ (for the readability) value to each next edge in the target model.

O

next _>

Left - Source Left - Target Right - Source Right - Target

Figure 6.33: Punctuation for End of functions (PCRuleComma)

PCRulelnitialText In Prolog Code model, the starting point of functions are repre-
sented by Imitial nodes. Prolog denotes the head of predicates (serve as functions) by the
‘2-7 symbol (and an additional ‘nl” element).

PCRuleRemovelnitComma The previous rule, PCRuleComma added a ¢’ to each
next edge, as well as the next edge from function nodes (Fun and SubFun nodes) to their
Initial nodes (-, is not acceptable). In order to get an executable Prolog Code, these
commas must be removed.

78 CHAPTER 6. FROM CFG TO PROLOG CODE MODELS

<Initial>

<Initial>

‘ : ol
Left - Source Left - Target Right - Source Right - Target

Figure 6.34: Punctuation for the beginning of functions (PCRulelnitialText)

: <Initial> : <Initial>
3 next :
‘ M
: N|next| ——p-
Left - Source Left - Target Right - Source Right - Target

Figure 6.35: Rule for the correct punctuation for the beginning of functions (PCRuleRe-
movelnitComma)

PCRuleRemovelnitEnd Another failure can be caused by textual element ¢’ in Prolog

¢)

programs, when an End node is the subsequent node of an Initial node (.’ is not
acceptable). The following rule (in Fig. 6.36) removes these commas.

| <Initial> <End> <Initial> <End>
: e next e :
name .
Value>
‘ N -
Left - Source Left - Target Right - Source Right - Target

Figure 6.36: Removal of commas from next edges between Initial and End nodes
(PCRuleRemovelnitEnd)

PCRuleRemoveFinalComma According to the previous rule, PCRuleRemoveEnd,
next edges to End nodes has commas, which must be removed (see Fig. 6.37).

The result of the transformation (PCRuleNext result extended by textual elements) is
illustrated in Fig. 6.38.

6.3. THE PROCESS OF THE TRANSFORMATION 79

<Initial> § <Initial>

3 next
: M

N|next| ——7p-

Left - Source Left - Target Right - Source Right - Target

Figure 6.37: Rule for the correct notation at the end of functions (PCRuleRemoveFinal-
Comma)

<Fun>
umi2im
next|
|nitial>
O
next variantRO
<CallFun>
cl lastfun

rienﬁ [antRO <SubFun> <Initial> <CallFun> <End>
<callFun nextfun @next i)next ca)next
c7 umi2im1 [nl] variantR0 [-nl] [variantR,fail] [.n(]
nextfun umizim1
<CallFun> <End>
<Subfun> <End> next ed
5
umi2im1 linkTU [.nl]
next [.nl]
<nitial> - fsupFun> anitial> <CallFun> <CallFun>
i f-n! next next /" next
i7 10/~ g next
next uml2imO [:-nl] [c==true,!] rule_A
tfun
<CallFun <SubFun>

7

<Initial> <%aJJ<un> <CallFun>,
e oy e L))

umi2imo umi2imo [-nl] 0] rule_B

Figure 6.38: Result of the transformation

80

CHAPTER 6. FROM CFG TO PROLOG CODE MODELS

Chapter 7

Algorithm Generation

The outline of the UML—-Prolog transformation is characterized by two model transforma-
tions as discussed previously. The first transformation (in Chapter 5) operates on UML
statechart graphs and constructs CFGs, while the second one transforms the CFG model
to a Prolog code specific graph (see Chapter 6). In order to generate the textual Prolog
code for the control, a special graph traversal algorithm is used as the end.

Before discussing the code generation algorithm itself, the Prolog representations of
models and are defined.

7.1 General Description of Models

As a starting point, please remember that both initial and internal models have the same
underlying graph model, which structure is as follows.

e Each graph node has an ID and a type.

e Edges have a type, an own identifier, and an identifier to a source and a target
node.

e Attributes values are stored by <Value> nodes.

¢ Reference nodes determine the correspondence between source and target objects
by several types of references and also have an ID as their attributes.

Prolog implementation use the following predicates to form the graph structure used
in the algorithm:

e Common model graph elements (the Prolog variable Model indicates the module
containing the current model).

— nodes are referred by the predicate:

Model:type(ID)

— special attribute nodes are denoted as follows

Model:value(ID, data)

81

82 CHAPTER 7. ALGORITHM GENERATION

— edges, directed from a source node (identified by FromID) to a target node
(referred by ToID), are represented by:

Model:type(ID,FromID,ToID)

e Reference nodes of reftypes) in the reference model have identifiers in the
Prolog implementation and two node identifiers, LeftID and RightID, referring to
the identifiers of the appropriate participants on source and target sides respectively:

Model:reftype(ID,LeftID,RightID)

e The Add function is responsible for adding a new object to a specific model, assigning
a new variable for object identifier at the same time.

— in case of nodes
add(Model:type(NewID))

— in case of attributes

add(Model:value(NewID, name))

in case of edges

add(Model:type(NewID, source, target))

— in case of reference nodes

add(Model:reftype(NewID, LeftID, RightID))

e The Remove function is responsible for deleting graph objects from a specific model,
defined by its identifier or attributes.

— in case of nodes
remove(Model:type(ID))

— in case of attributes

remove(Model:value(ID, name))

in case of edges

remove(Model:type(ID, source, target))

— in case of reference nodes

remove(Model:reftype(ID, LeftID, RightID))

Please note, that variables in Prolog always begin with capital letters while the names
of Prolog predicates are constrained to be an atom, thus they normally begin with non—
capitals. More details on Prolog can be find in Section 6.1.

In the following the code of the algorithm will be discussed.

7.2. PROLOG CODE OF THE TRANSFORMATION 83

Predicates = set of Prolog Code predicates — elements (nodes and edges, generated
from an initial UML statechart graph)

CONTROL = resulted algorithm of control flow

name(id) = the name of an element

type(id) = the type of an element

next(id) = the identifier of an element connected by next edge to the element referred
by id

nextfun(id) = the identifier of an element connected by nextfun edge to the element
referred by id

lastfun(id) = the identifier of an element connected by lastfun edge to the element

referred by id

controlgeneration =
open2write(CONTROL);
gen_fun;
geb subfun;

end.

gen fun =
for each (id: type(id)="Fun") do
write(CONTROL, name(id));
gen_body(next(id));
end.

gen body(id) =

Currld = id;
write(CONTROL, name(id));
repeat

Currld = next(Currld);
write(CONTROL, name(id));
until type(Currld) = "End";
end.
gen subfun =
for each (id: type(id)="CallFun") do
if 3 nextfun(id) then
gen_body(nextfun(id));
else if 3 lastfun(id) then
gen_body(lastfun(id));
end.

Figure 7.1: The algorithm of the control

84 CHAPTER 7. ALGORITHM GENERATION

7.2 Prolog Code of the Transformation

The skeleton of the graph traversal algorithm is introduced as follows (in Fig. 7.1) in a
Prolog style. The original Prolog source code can be found in Appendix A.3.

1. The algorithm processes the Fun nodes of the PC graph one by one.

(a) the head of the clause is printed with respect to the name attribute of Fun nodes
and Initial nodes;

(b) its body is processed by listing the subsequent predicates represented by
CallFun nodes according to next edges one by one (separated by commas);

(c) when the End node is reached the code generation for the current Fun node is
finished (by printing the final dot symbol).

2. At a next phase, the algorithm processes the SubFun nodes of the PC graph in order
to create further Prolog predicates related to CallFun nodes by nextfun and lastfun
edges in order to keep same predicates in an appropriate order. The code generation
for SubFun nodes is carried out similarly to the method in case of Fun nodes (1.a,
L.b, 1.c).

7.3 Prolog Code of the Sample Control

The following few lines of Prolog code can be regarded as the overall aim of the previous
chapters, as being the Prolog equivalent of the UML statechart of Fig. 3.4, the control flow
graph of Fig. 5.23, and finally, the Prolog Code model of Fig. 6.38.

uml2im: -
ftsTU,
uml2iml.

uml2im0: -
c==true,!,
rule_A.

uml2im0: -
'
rule_B.
uml2iml: -
variantRO,
1inkTU.
uml2iml: -
uml2im0.
variantRO: -
variantR,fail.
variantRO.

Table 7.1: Prolog source code of the control algorithm

One can easily verify that the Prolog code conforms with the execution order prescribed
by the visual control flow specification represented by UML statecharts (see Fig. 3.4) and is
equivalent all the intermediate models used during the automatic code generation process.

Chapter 8

Conclusion and Result Evaluation

8.1 Benchmark Examples

Finally, as a benchmark application, our automated algorithm generation method was
tested on a UML statechart model of medium size in order to assess its run—time perfor-
mance.

The run-time performance of the automated algorithm generation method based on
model transformation was tested on the following benchmark examples.

Benchmark Example 1 Qur well-known UML statechart specifying the control flow of
model transformation unit uml2imTU is assessed as a transformation of small size.

Benchmark Example 2 The following figures (depicted in Fig. 8.1) depict the compo-
nents of a larger UML statechart (called TUlarge) consisting of the following siz trans-
formation units: compositeStateTU, simpleStatelU, transitionTU, nonInterlevel TU,
interlevelTU, initialStatelU.

The process of tests was the following:

e The corresponding UML statecharts were created in Rational Rose (leading UML
CASE tool), and the models were exported into an XMI format. The size of the
XMI file was recorded.

e A filtering Prolog program converted this XMI description into the corresponding
Statechart graph model. The overall number of graph nodes edges, and attributes
was encountered this time.

e The first transformation (carried out by our Prolog program found in Appendix A.1)
from statechart graphs to control flow graphs were performed and its execution was
timed.

e As a result, a control flow graph was obtained and its size was measured with respect
to the number of contained graph objects.

e The intermediate CFG model was transformed to a Prolog Code graph (please find
the corresponding Prolog source code of transformation rules in Appendix A.2), and
the run—time of the transformation algorithm was measured again.

85

86 CHAPTER 8. CONCLUSION AND RESULT EVALUATION

S !
L

initState4 <<TU>> <<rule>> <<TU>>
. ftsTU variantR linkTU
<<rule>>
rule_itl /
<<rule>>
rule_A

<<TU>>
end Sty»/

simpleStateTU

Final

<<rule>>
rule_it2

<<rule>>
rule_B

(a) Control of compositeState TU (b) Control of simpleStateTU

initState5

newState
<<rule>> "f(a.0)
rule_t1
"else
Ad>0
<<rule>> rule_nit2 <<rule>> <<rule>>
<<TU>> rule_nitl rule_nit3 rule_nit4
simpleState TU
!
<<TU>>
composite
StateTU
newState2 e 3 ate
rule_1 fes
(c) Control of transitionTU (d) Control of nonInterlevel
!
| initState6 <<rule>>
rule_inl
initState3

<<TU>>
interlevelTransitionTU

\{ <<TU>>
transitionTU ~g(a)
"else <<TU>>
simpleStateTU
<<TU>>
interlevelTransitionTU endgtate6

(e) Control of interlevelTU (f) Control of initialStateTU

Figure 8.1: An overview of model transformation

8.2. BENCHMARK RESULTS 87

8.2

The overall number of Prolog Code graph objects (nodes, edges, and attributes) was
counted as well.

Finally, after having executed the graph traversal algorithm (found in Appendix A.3),
the Prolog code implementing the visually specified control structure was recorded
with respect to the number of lines of automatically generated code.

Benchmark Results

The results of the tests are shown in Table 8.1, according to the previous phases.
The following abbreviations are used in the tables for the two benchmark examples:

XMI size is the XMI file size of the UML statecharts (displayed in bytes)

UML size is the size of the generated UML statechart graph (displayed in the overall
number of graph objects)

UMLtoCFG time indicates the CPU time required for executing the UML2CFG pro-
gram on the benchmark example UML files (displayed in seconds)

CFG size refers to the size of the generated CFG model (displayed in graph objects)

CFGtoPC time is the CPU time required for executing the CFG2PC program on the
benchmark example UML files,

PC size indicates the size of the final Prolog Code model (displayed in number of
graph objects).

Code size measures the number of source code lines in the automatically generated
Prolog program implementing the control structures (displayed in number of source
code lines).

As the final step of code generation is a simple graph traversal algorithm (executed
usually in linear time), execution time was not measured in this case.

| Results/Examples | uml2imTU | TUlarge |

XMI size 45351 300484
UML size 194 1008
UMLtoCFG time 0.02 0.14
CFG size 52 287
CFGtoPC time 0.02 0.19
PC size 141 860
Code size 17 100

Table 8.1: Test results of a dense graph

The following facts can be observed:

Prolog programs (UMLtoCFG and CFGtoPC) are extremely powerful (indicated by the
time of the running) for statecharts of small and medium size.

88

CHAPTER 8. CONCLUSION AND RESULT EVALUATION

e The Prolog code representation drastically reduces the size of UML models represented

in a verbose XMI model.

e The size of PC target files are larger than the size of their corresponding CFG descrip-

tion since the former model contains special textual elements of Prolog.

We can draw the following conclusions:

Control Flow Graphs may provide a general and compact means to represent control
structures for code generation of arbitrary target language.

Choosing Prolog for implementing complex model transformations concerning auto-
matic code generation seems to be a correct design decision indicated by the run—time
performance of transformation rules for models of a large scale.

The code generation algorithm (described by the two model transformations and the
graph traversal method) is correct, which was informally verified through Chapters 5
- 7.

8.3 Future Work

Further research aiming to extend the results presented in the current paper may be re-
quired at least in the following fields.

e Although Prolog, as providing powerful graph pattern matching, was chosen for

our automated code generation (described in Chapter 4), the application method of
transformation process is general, i.e. commonly used Control Flow Graphs may
serve as a basic description mechanism for control flow representation. Thus,
the transformation method should be extended from CFGs to further program-
ming languages including object—oriented and functional ones.

The further line of research could be the formal verification of the automatic
generation algorithm. For this reason, formal methods have to be applied to the
transformation to verify its correctness.

8.4 Conclusion

In the current paper, an automated algorithm generation of the control structures in trans-
formation units is elaborated by means of model transformation rules.

The algorithm generation consists of three distinct phase:

e At first, the UML based visual specification which represents the control flow by

using UML statecharts is transformed into an abstract model called Control Flow
Graph (CFG).

e Secondly, a Prolog code specific (PC) graph model is generated from the CFG

model that is closely related to the final executable Prolog code.

e Finally, a simple algorithm traverses the Prolog code graph and prints the syntactic

elements attached to nodes and edges into the target file.

8.4. CONCLUSION 89

The code generation approach was implemented in Prolog, tested on benchmark appli-
cations with valuable results, and informally verified.

As a conclusion, we hope that the automatic algorithm generation method presented
in the report might serve as a basis for the design of future automatic code generation
problems.

90

CHAPTER 8. CONCLUSION AND RESULT EVALUATION

Appendix A

The Prolog Source Code of
Transformations

A.1 From UML Statecharts to Control Flow Graphs

uml2cfgTU: -
ruleCS,
ruleSS,
ruleBranch,
ruleFork,
rulelnitial,
ruleFinal,
ruleSubvertex,
ruleTrans,
ruleLoop,
ruleElse,
ruleCond.

%Rule CompositeState

ruleCS: -
models (Src, REF, Targ),
%LHS
Src:compositeState(4),
Src:name(E1, A, B),
Src:value(B, N),
%RHS
add(Targ:fun(P)),
add(Targ:value(Q, N)),
add (Targ:name (E2, P, Q)),
add (REF : subRef (Ref1, A, P)),
fail.

ruleCS.

%Rule SimpleState

ruleSS: -
models(Src, REF, Targ),
LHS
Src:simpleState(A),
Src:name(E1, A, B),
Src:value(B, N),
JRHS
add(Targ:cfgNode (P)),
add(Targ:value(Q, N)),

91

92 APPENDIX A. THE PROLOG SOURCE CODE OF TRANSFORMATIONS

add(Targ:name(E2, P, Q)),
add (REF : subRef (Refl, A, P)),
fail.

ruleSS.

%Rule Pseudostate Branch

ruleBranch: -
models(Src, REF, Targ),
%LHS
Src:pseudostate(4),
Src:kind(E, A, B),
Src:value(B, ’branch’),
%RHS
add(Targ:branch(P)),
add (REF:subRef (Ref1, A, P)),
fail.

ruleBranch.

%Rule of PseudoState Fork

ruleFork: -
models(Src, REF, Targ),
%LHS
Src:pseudostate(4),
Src:kind(E, A, B),
Src:value(B, ’fork’),
%RHS
add(Targ:fork(P)),
add (REF:subRef (Ref1, A, P)),
fail.

ruleFork.

%Rule of PseudoState Initial

rulelnitial:-
models(Src, REF, Targ),
%LHS
Src:pseudostate(4),
Src:kind(E, A, B),
Src:value(B, ’initial’),
%RHS
add(Targ:initial(P)),
add (REF:subRef (Refl, A, P)),
fail.

rulelnitial.

%Rule of FinalState
ruleFinal:-
models(Src, REF, Targ),
%LHS
Src:finalState(A),
%RHS
add(Targ:final(P)),
add (REF:subRef (Refl, A, P)),
fail.
ruleFinal.

#Rule of subvertex edge
ruleSubvertex: -
models (Src, REF, Targ),
%LHS

A.1. FROM UML STATECHARTS TO CONTROL FLOW GRAPHS

Src:subvertex(E1, A, B),
REF:subRef (Refl, A, P),
REF:subRef (Ref2, B, Q),
%RHS
add(Targ:content (E2, P, Q)),
fail.

ruleSubvertex.

%Rule of Transition

ruleTrans: -
models (Src, REF, Targ),
%LHS
Src:transition(B),
Src:source(E1, B, A),
Src:target(E2, B, C),
REF:subRef (Refl, A, P),
REF: subRef (Ref2, C, Q),
%RHS
add(Targ:next(E3, P, Q)),
fail.

ruleTrans.

%Rule of self--transition

rulelLoop: -
models(Src, REF, Targ),
%LHS
Src:signalEvent (C),
Src:name(E4, C, D),
Src:value(D, ’!’),
Src:trigger (E3, B, C),
Src:transition(B),
Src:target(E2, B, A),
Src:source(E1, B, A),
Src:simpleState(4),
REF:subRef (Refl, A, P),
Targ:next(E5, P, P),
%RHS
remove (Targ:next (E5, P, P)),
remove (Targ:cfgNode (P)),
add_old(Targ:loopNode(P)),
add(Targ:loop(E6, P, P)),
fail.

ruleLoop.

%Rule of condition

ruleCond: -
models (Src, REF, Targ),
%LHS
Src:guard(C),
Src:guard(El, B, C),
Src:transition(B),
Src:source(E2, B, A),
Src:target(E3, B, E),
Src:name(E4, C, D),
Src:value(D, Cond),
REF:subRef (Refl, A, P),
REF:subRef (Ref2, E, Q),
Targ:next(E5, P, Q),
%RHS

93

94 APPENDIX A. THE PROLOG SOURCE CODE OF TRANSFORMATIONS

add(Targ:cond(R)),
add(Targ:next(E6, P, R)),
add(Targ:next(E7, R, Q)),
add(Targ:value(S, Cond)),
add(Targ:cond(E8, R, S)),
remove (Targ:next (E5, P, Q)),
fail.

ruleCond.

%Rule of else structure

ruleElse: -
models (Src, REF, Targ),
%LHS
Src:guard(C),
Src:guard(B, C),
Src:name(EO, C, D),
Src:value(D, ’else’),
Src:transition(B),
Src:source(E3,B, A),
Src:target(E4, B, E),
REF:subRef (Refi, A, P),
REF:subRef (Ref2, E, Q),
Targ:next(F, P, Q),
JRHS
add(Targ:else(R)),
add(Targ:next(G, P, R)),
add(Targ:next(H, R, Q)),
remove (Targ:next(F, P, Q)),
fail.

ruleElse.

A.2. FROM CONTROL FLOW GRAPHS TO PROLOG CODE MODEL GRAPHS 95

A.2 From Control Flow Graphs to Prolog Code Model
Graphs

genname (Name, NewName) :-
names (Name,ID), !,
% Creating a new name
create_name (Name, ID,NewName) ,
% Updating the internal database
retract (names (Name,ID)),
ID1 is ID + 1,
assert (names (Name,ID1)).
genname (Name ,NewName) : -
create_name (Name,0,NewName) ,
assert (names (Name, 1)) .

create_name (Name,ID,NewName) : -
atom_chars (Name,NameLs) ,
number_chars (ID,NumLs) ,
append (NameLs ,NumLs, NewNameLs),
atom_chars (NewName ,NewNameLs) .

cfg2pcTU: -
pcRuleFun,
pcRuleCFG,
pcRuleTop,
pcRuleBranchlIn,
pcRuleForkIn,
pcRuleloop,
pcRulelLoopFirst,
pcRuleLoopLast,
pcRuleFinal,
pcRulelnitial,
pcRuleCond,
pcRuleElse,
pcRuleForkQOut,
pcRuleBranchQutCond,
pcRuleBranchOutElse,
pcRulelNext,
pcRuleDots,
pcRuleComma,
pcRulelnitialText,
pcRuleTab,
pcRuleRemovelInitComma,
pcRuleRemoveInitEnd,
pcRuleRemoveFinalComma.

%Rule of Fun node

pcRuleFun: -
models (Src, REF, Targ),
LHS
Src:fun(A),
Src:name(E1, A, B),
Src:value(B, N),
JRHS
add(Targ:fun(P)),
add(Targ:value(Q, [N]1)),
add(Targ:name(E2, P, Q)),

96 APPENDIX A. THE PROLOG SOURCE CODE OF TRANSFORMATIONS

add (REF:refIn(Ref, A, P)),
add (REF :refOut (Refl, A, P)),
fail.

pcRuleFun.

%Rule of CFG node

pcRuleCFG: -
models(Src, REF, Targ),
%LHS
Src:cfgNode(A),
Src:name(E1, A, B),
Src:value(B, N),
JRHS
add(Targ:callFun(P)),
add(Targ:value(Q, [N]1)),
add(Targ:name(E2, P, Q)),
add (REF:refIn(Ref, A, P)),
add (REF :refOut (Refl, A, P)),
fail.

pcRuleCFG.

%Rule of Branch node

pcRuleBranchln: -
models(Src, REF, Targ),
LHS
Src:fun(4),
Src:name(E1, A, C),
Src:value(C, N),
Src:content (E2, A, B),
Src:branch(B),
RHS
add(Targ:callFun(P)),
genname (N,NO) ,
add(Targ:value(Q, [NOI1)),
add(Targ:name(E3, P, Q)),
add(Targ:end(S)),
add(Targ:next(E5, P, S)),
add (REF:refIn(Ref, B, P)),
fail.

pcRuleBranchln.

%Rule of Fork node

pcRuleForkIn: -
models (Src, REF, Targ),
LHS
Src:fun(4),
Src:name(E1, A, C),
Src:value(C, N),
Src:content (E2, A, B),
Src:fork(B),
%RHS
add(Targ:callFun(P)),
genname (N,NO) ,
add(Targ:value(Q, [NOI1)),
add(Targ:name(E3, P, Q)),
add(Targ:end(S)),
add(Targ:next(E5, P, S)),
add (REF:refIn(Ref, B, P)),
fail.

A.2. FROM CONTROL FLOW GRAPHS TO PROLOG CODE MODEL GRAPHS 97

pcRuleForkIn.

#Rule of Loopnode

pcRuleLoop: -
models (Src, REF, Targ),
%LHS
Src:loopNode (B),
Src:loop(EO, B, B),
Src:name(E1, B, C),
Src:value(C, N),
%RHS
add(Targ:callFun(P)),
genname (N,NO) ,
add(Targ:value(Q, [NOI)),
add(Targ:name(E2, P, Q)),
add (REF:refLoop(Ref, B, P)),
add (REF:refIn(Refl, B, P)),
add (REF:ref0Out (Ref2, B, P)),
fail.

pcRuleLloop.

#Rule of loop to create the first function
pcRuleloopFirst:-
models(Src, REF, Targ),
LHS
REF:refLoop(Refl,A,P),
Src:loopNode (4),
Src:name (EO,A,B),
Src:value(B,M),
Targ:callFun(P),
Targ:name (E1, P, Q),
Targ:value(Q, N),
%RHS
add(Targ:subFun(T)),
add(Targ:nextfun(E3, P, T)),
add(Targ:value(Y,N)),
add(Targ:name(E4, T, Y)),
add(Targ:initial(U)),
add(Targ:next(E5, T, U)),
add(Targ:callFun(V)),
add(Targ:next(E6, U, V)),
add(Targ:value(S, [M, °’,
add(Targ:name (E7, V, S)),
add(Targ:end (X)),
add(Targ:next(E8, V, X)),
fail.
pcRulelLoopFirst.

*fail’1)),

#Rule of loop to create the last function
pcRuleLoopLast: -
models (Src, REF, Targ),
%LHS
REF:refLoop(Ref1,A,P),
Src:loopNode (A),
Targ:callFun(P),
Targ:name (E1, P, Q),
Targ:value(Q, N),
%RHS

98 APPENDIX A. THE PROLOG SOURCE CODE OF TRANSFORMATIONS

add(Targ:subFun(R)),
add(Targ:lastfun(E2, P, R)),
add(Targ:value(Y,N)),
add(Targ:name(E3, R, Y)),
add(Targ:initial(S)),
add(Targ:next(E4, R, S)),
add(Targ:end(T)),
add(Targ:next(E5, S, T)),
fail.

pcRuleLoopLast.

%Rule of Final node
pcRuleFinal:-
models(Src, REF, Targ),
LHS
Src:final(A),
%RHS
add(Targ:end(P)),
add (REF:refIn(Ref, A, P)),
fail.
pcRuleFinal.

%Rule of Initial node

pcRulelnitial:-
models(Src, REF, Targ),
%LHS
Src:initial(B),
Src:content (EO, A, B),
Src:fun(d),
REF:refOut (Refi, A, P),
% RHS
add(Targ:initial(Q)),
add(Targ:next (E1,P,Q)),
add (REF:refIn(Ref2,B,Q)),
add (REF :ref0Out (Ref3,B,Q)),
fail.

pcRulelnitial.

%Rule of conditional thread of branches
pcRuleCond: -
models (Src, REF, Targ),
LHS
Src:cond(B),
Src:cond(E2, B, C),
Src:value(C, Cond),
JRHS
add(Targ:callFun(R)),
add(Targ:value(Q, [Cond, ’,!’1)),
add(Targ:name(E5, R, Q)),
add (REF:refIn(Refl, B, R)),
add (REF :ref0Out (Ref2, B, R)),
fail.
pcRuleCond.

%Rule of else thread of branches
pcRuleElse: -
models(Src, REF, Targ),
%LHS
Src:else(B),

A.2. FROM CONTROL FLOW GRAPHS TO PROLOG CODE MODEL GRAPHS 99

%RHS
add(Targ:callFun(R)),
add(Targ:value(Q, [’!°]1)),
add(Targ:name(E5, R, Q)),
add (REF:refIn(Refl, B, R)),
add (REF:refOut (Ref2, B, R)),
fail.

pcRuleElse.

#Rule of outgoing next edges from Fork nodes

pcRuleForkQOut: -
models(Src, REF, Targ),
%LHS
Src:fork(4),
REF:refIn(Refl, A, P),
Targ:name(E1, P, Q),
Targ:value(Q, N),
Src:next(E2, A, B),
REF:refIn(Ref2, B, R),
“%RHS
add(Targ:subFun(S)),
add(Targ:nextfun(E3, P, S)),
add(Targ:value(Y,N)),
add(Targ:name (E4, S, Y)),
add(Targ:initial(T)),
add(Targ:next(E5, S, T)),
add(Targ:next(E6, T, R)),
fail.

pcRuleForkQut.

#Rule of outgoing next edges from Branch nodes

pcRuleBranchQutCond: -
models(Src, REF, Targ),
%LHS
Src:branch(A),
REF:refIn(Refl, A, P),
Targ:name(E1, P, Q),
Targ:value(Q, N),
Src:next(E2, A, B),
Src:cond(B),
REF:refIn(Ref2, B, R),
%RHS
add(Targ:subFun(S)),
add(Targ:nextfun(E3, P, S)),
add(Targ:value(Y,N)),
add(Targ:name(E4, S, Y)),
add(Targ:initial(T)),
add(Targ:next(E5, S, T)),
add(Targ:next(E6, T, R)),
fail.

pcRuleBranchOutCond.

#Rule of outgoing next edges from Else nodes
pcRuleBranchOutElse: -

models (Src, REF, Targ),

LHS

Src:branch(A),

REF:refIn(Refl, A, P),

100 APPENDIX A. THE PROLOG SOURCE CODE OF TRANSFORMATIONS

Targ:name (E1, P, Q),
Targ:value(Q, N),
Src:next(E2, A, B),
Src:else(B),
REF:refIn(Ref2, B, R),
%RHS
add(Targ:subFun(S)),
add(Targ:lastfun(E3, P, S)),
add(Targ:value(Y,N)),
add(Targ:name (E4, S, Y)),
add(Targ:initial(T)),
add(Targ:next(E5, S, T)),
add(Targ:next(E6, T, R)),
fail.
pcRuleBranchQOutElse.

#Rule of next edges
pcRuleNext: -
models(Src, REF, Targ),
%LHS
Src:next(E1, A, B),
REF:refOut (Refi, A, P),
REF:refIn(Ref2,B,Q),
JRHS
add(Targ:next(E2, P, Q)),
fail.
pcRuleNext.

#Dots assigned to End nodes
pcRuleDots: -
models (_Src, _REF,Targ),
% LHS
Targ:end (P),
% RHS
add(Targ:value(Q,[’.”,’n1°])),
add(Targ:name (EO,P,Q)),
fail.
pcRuleDots.

ACommas assigned to next edges

pcRuleComma: -
models (Src,REF,Targ) ,
% LHS
Targ:next(E, A, B),
% RHS
add_old(Targ:value(E,[’,?,’n1°])),
% add(Targ:name (EO,E,Q)),
fail.
pcRuleComma.
%h¢:-’ assigned to Initial nodes
pcRulelnitialText:-
models (_Src,_REF,Targ),
% LHS
Targ:initial(P),
% RHS

add(Targ:value(Q,[’:-?,’nl1’])),
add (Targ:name (E0,P,Q)),
fail.

A.2. FROM CONTROL FLOW GRAPHS TO PROLOG CODE MODEL GRAPHS101

pcRulelnitialText.

%Removal of commas after Initial nodes
pcRuleRemoveInitComma: -
models (Src,REF,Targ) ,
% LHS
Targ:initial(B),
Targ:next (EO,A,B),
Targ:value (EO,M),
Targ:next(E1,B,C),
Targ:value (E1,N),
% RHS
remove (Targ:value (EO,M)),
remove (Targ:value (E1,N)),
add_old(Targ:value(EO, [1)),
add_old(Targ:value(E1,[1)),
fail.
pcRuleRemoveInitComma.

#Removal of unnecessary commas and ‘:-’
pcRuleRemoveInitEnd: -
models (Src,REF,Targ) ,
% LHS
Targ:initial(B),
Targ:next(E1,B,C),
Targ:end(C),
Targ:name (E2,B,D),
Targ:value (D,N),
% RHS
remove (Targ:value(D,N)),
add_old(Targ:value(D,[1)),
fail.
pcRuleRemoveInitEnd.

%Removal of commas before End nodes
pcRuleRemoveFinalComma: -
models (Src,REF,Targ) ,
% LHS
Targ:end(C),
Targ:next(E1,B,C),
Targ:value (E1,N),
% RHS
remove (Targ:value (E1,N)),
add_old(Targ:value(E1,[1)),
fail.
pcRuleRemoveFinalComma.

102 APPENDIX A. THE PROLOG SOURCE CODE OF TRANSFORMATIONS

A.3 The Prolog Source Code of Control Algorithm Genera-
tion

WProcess of function nodes from the beginning of them
generate_code: -

gen_fun,

gen_subFun.

gen_fun:-
model (Src) ,
Src:fun(ID),
get_name (ID, Name),
print_value (Name),
gen_body (ID) ,
hprocess the subsequent object
fail.

gen_fun.

hcontinue the codewriting at the next node
gen_body (ID) : -
model (Src),
Src:next(E, ID, ToID), !,
get_edge_name (E,Name) ,
print_value (Name),
get_type (ToID, Type),
gen_body2(ToID, Type).

hspecial process, according to the type of the current node

gen_body2(ID, ’callFun’):-
1
get_name (ID, Name),
print_value (Name),

gen_body (ID) .

gen_body2(ID, ’initial’):-
1
get_name (ID, Name),
print_value (Name),
gen_body (ID) .

gen_body2(ID, ’end’):-
!

get_name (ID, Name),
print_value (Name) .

gen_subFun: -
model (Src) ,
Src:callFun(ID),
gen_subFun2(ID),
fail.
gen_subFun.

Jbranch, fork or loop process, the coherent threads must have been
htogether in the code
gen_subFun2(ID) : -

model (Src) ,

Src:nextfun(_E, ID, ToID),

A.3. THE PROLOG SOURCE CODE OF CONTROL ALGORITHM GENERATION103

Src:subFun(ToID),
get_name (ToID, Name),
print_value (Name),
gen_body (ToID),

fail.

%the lastfun determines the last fun
gen_subFun2(ID) : -
model (Src),
Src:lastfun(_E, ID, ToID),
Src:subFun(ToID),
get_name (ToID, Name),
print_value (Name),
gen_body (ToID).

hget the name of the current node by connected name edge
get_name (ID, NameLs):-

model (Src) ,

Src:name(_E, ID, ToID),

Src:value(ToID, NameLs), !.

get_edge_name (ID, NameLs):-
model (Src),
Src:value(ID, Namels), !.

get_type (ID,Type) : -
model (Model) ,
current_predicate(Type, Model:Term),
arg(1l,Term,ID),
(Model:Term) .

print_value([]).

print_value([nl|Ls]):-
nl, !,
print_value(Ls).

print_value([VallLs]):-
write(Val),
print_value(Ls).

104 APPENDIX A. THE PROLOG SOURCE CODE OF TRANSFORMATIONS

Bibliography

1]

2]

3]

[4]

5]

(6]

7]

8]

19]

[10]

[11]

APPLIGRAPH Subgroup Meeting on Exchange Formats for Graph Transformation
Systems, Paderborn, September 2000.

A. Aho, R. Sethi, and D. Ullman. Compilers: Principles, Techniques and Tools.
Addison-Wesley, 1986.

M. Andries, G. Engels, A. Habel, B. Hoffmann, H.-J. Kreowski, S. Kuske, D. Plump,
A. Schiirr, and G. Taentzer. Graph transformation for specification and programming.
Science of Computer Programmming, 1999.

A. Bondavalli, M. D. Cin, D. Latella, and A. Pataricza. High-level Integrated De-
sign Environment for Dependability. In WORDS’99, 1999 Workshop on Real-Time
Dependable System, 1999.

A. Bondavalli, I. Majzik, and I. Mura. Automatic dependability analyses for support-
ing design decisions in UML. In HASE’99: the 4th IEEE International Symposium
on High Assurance Systems Engineering, 1999.

M. D. Cin, G. Huszerl, and K. Kosmidis. Evaluation of safety-critical system based
on guarded statecharts. In HASE’99 4th IEEE International Symposium on High
Assurance Systems Engineering, 1999.

A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Léwe. Handbook of
Graph Grammars and Computing by Graph Transformations, volume 1: Foundations,

chapter Algebraic Approaches to Graph Transformation — Part I: Basic Concepts
and Double Pushout Approach, pages 163-245. World Scientific, 1997.

H. Ehrig, R. Heckel, M. Korff, M. Lowe, L. Ribeiro, A. Wagner, and A. Corradini.
Handbook of Graph Grammars and Computing by Graph Transformations, volume
1: Foundations, chapter Algebraic Approaches to graph transformation — Part II:

Single pushout approach and comparison with double pushout approach, pages 247—
312. World Scientific, 1997.

D. Harel. Statecharts: A visual formalism for complex systems. Science of Computer
Programming, 8(3):231-274, 1987.

G. Holzmann. The model checker SPIN. IEEE Transactions on Software Engineering,
(23):279-295, 1997.

Intelligent Systems Laboratory, Swedish Institute of Computer Science. Sicstus Prolog
User’s Manual, November 1997.

105

106

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

BIBLIOGRAPHY

R. A. Kowalski. Logic for problem solving. Technical report, University of Edinburgh
DCL Memo 75, Dept of Artificial Intelligence, March 1974.

H.-J. Kreowski and S. Kuske. On the interleaving semantics of transformation units
— a step into GRACE. In J. E. Cuny, H. Ehrig, G. Engels, and G. Rozenberg, editors,
Graph Grammars and Their Application to Computer Science, volume 1073 of LNCS,
pages 89-108. Springer, 1996.

S. Kuske. More about control conditions for transformation units. In H. Ehrig,
G. Engels, H.-J. Kreowski, and G. Rozenberg, editors, Theory and Application of
Graph transformations, volume 1764 of LNCS, pages 323-337, 2000.

D. Latella, I. Majzik, and M. Massink. Towards a formal operational semantics of
UML Statechart Diagrams. In IFIP TC6/WG6.1 3rd International Conference on
Formal Methods for Open Object-Oriented Distributed Systems, february 1999.

M. Nagl. Set theoretic approaches to graph grammars. In H. Ehrig, M. Nagl, G. Rozen-
berg, and A. Rosenfeld, editors, Graph Grammars and Their Application to Computer
Science, volume 291, pages 41-54, Berlin, 1987. Springer.

Object Management Group. UML Semantics Version 1.1, September 1997.
http://www.rational.com/uml.

Object Management Group. XML Metadata Interchange, October 1998.
http://www.omg.org.

Object Management Group. Meta Object Facility Version 1.3, September 1999.
http://www.omg.org.

Object Management Group. Object Constraint Language Specification Version 1.3,
June 1999. http://www.rational.com /uml.

S. Owre and N. Shankar. The formal semantics of PVS. Technical report, Computer
Science Laboratory, SRI International, August 1997.

J. A. Robinson. A machine—oriented logic based on the resolution principle. Journal
of the ACM, 12:23-44, 1965.

P. Roussel. Manuel de Reference et d’Utilisation. Groupe d’Intelligence Artificielle,
Marseille-Luminy, 1975.

A. Schiirr. Introduction to PROGRES, an attributed graph grammar based specifi-
catoin language. In M. Nagl, editor, Graph—Theoretic Concepts in Computer Science,
volume 411, pages 151-165, Berlin, 1990. Springer. Lecture Notes in Computer Sci-
ence.

D. Varr6é. Automatic transformation of UML models. Master’s thesis, Budapest
University of Technology and Economics, 2000.

D. Varré, P. Domokos, and A. Pataricza. UML specification of model transformation
systems. In TACAS 2001: Tools and Algorithms for the Construction and Analysis of
Systems, 2001. Submitted paper.

BIBLIOGRAPHY 107

[27] D. Varr6 and G. Varré. Designing the automatic transformation of visual languages.
scientific report (TDK), Technical University of Budapest, November 1999.

[28] D. Varr6, G. Varrd, and A. Pataricza. Designing the automatic transformation of
visual languages. Science of Computer Programming, December 2000. Submitted

paper.

