
Automated Formal Verification of
Model Tranformations?

Dániel Varŕo and Andŕas Pataricza

Budapest University of Technology and Economics
Department of Measurement and Information Systems

H-1521 Budapest, Magyar tudósok k̈orútja 2.
{varro,pataric }@mit.bme.hu

Abstract. When designing safety critical applications in UML, the system mod-
els are frequently projected into various mathematical domains (such as Petri
nets, transition systems, process algebras, etc.) to carry out a formal analysis of
the system under design byautomatic model transformations. Automation surely
increases the quality of such transformations as errors manually implanted into
transformation programs during implementation are eliminated; however, con-
ceptual flaws in transformation design still remain undetected. In this paper,
we present a model-level, modeling language independent and highly automated
technique to formally verify by model checking that a model transformation from
an arbitrary well-formed model instance of the source modeling language into its
target equivalent preserves (language specific) dynamic consistency properties.
We demonstrate the feasibility of our approach on a complex mathematical model
transformation from UML statecharts to Petri nets.
Keywords: model transformation, graph transformation, model checking, formal
verification, UML statecharts, Petri nets.

1 Introduction

For most computer controlled systems, especially dependable, real-time systems for
critical applications, an effective design process requires an early validation of the con-
cepts and architectural choices, without wasting time and resources to assess whether
the system fulfills its requirements or needs some re-design.

The Unified Modeling Language (UML) together with domain specific profiles
(e.g., the UML Profile for Schedulability, Performance and Time [16]) provides a stan-
dard and easy-to-understand visual way to capture both the requirements and the system
model.

However, a standard modeling language does not alone guarantee the correctness of
the design. In order to increase the level of confidence that can be put on a system math-
ematical tools (based on formal methods like Petri nets, dataflow networks, transition
systems, process algebras, etc.) are used to assess the most important system parameters
? This work was partially carried out during the visit of the first author to the University of

Paderborn (Germany), and it was supported by the SegraVis Research Network, the Hungarian
Information and Communication Technologies and Applications Grant (IKTA 065/2000), and
the Hungarian National Scientific Foundation Grant (OTKA 038027)



CSDUML 2003: Workshop on Critical Systems Development in UML
September, 2003, San Francisco, USA, Technical Report TUM-I0323, pp. 63–78,

(such as functional correctness, timeliness, performability or dependability). Unfortu-
nately, sophisticated verification tools (such as the SPIN model [11] checker) require
a thorough knowledge of the underlying mathematics, and therefore special skills are
needed for dependable IT system designers.

In order to bridge the huge abstraction gap, many approaches (e.g., [4, 7, 13, 25])
to automatically transform high-level UML based system models into low-level mathe-
matical models, and then back-annotate the results of the formal analysis into the orig-
inal UML model of the system in order to hide the underlying mathematics.

In the current paper, we investigate the model transformation problem from a gen-
eral perspective, i.e., to specify how to transform a well-formed instance of a source
modeling language (which is typically UML) into its equivalent in the target model-
ing language (which can be UML, a target programming language, or a mathematical
modeling language).

Related work in model transformationsModel transformation methodologies have been
under extensive research recently. Existing model transformation approaches can be
grouped into two main categories:

– Relational approaches: these approaches typicallydeclare a relationshipbetween
objects (and links) of the source and target language. Such a specification is typi-
cally based upon a metamodel with OCL constraints [1,15].

– Operational approaches: these techniquesdescribe the processof a model trans-
formation from the source to the target language. Such a specification mainly com-
bines metamodeling with (a) graph transformation [5–8,25], (b) triple graph gram-
mars [20] or (c) term rewriting rules [26].

Many of the previous approaches already tackle the problem of automating model
transformations in order to provide a higher quality of transformation programs com-
pared with manually written ad hoc transformation scripts.

Problem statementHowever, automation alone cannot protect against conceptual flaws
implanted into the specification of a complicated model transformation. Consequently,
a mathematical analysis carried out on the UML design after an automatic model trans-
formation might yield false results, and these errors will directly appear in the target
application code.

As a summary, it is crucial to realize thatmodel transformations themselves can
also be erroneousand thus may become a quality bottleneck of a transformation based
verification and validation framework (such as [4]). Therefore, prior to analyzing the
UML model of a target application, we have to prove that the model transformation
itself is free of conceptual errors.

Correctness criteria of model transformationsUnfortunately, it is hard to establish a
single notion of correctness for model transformations. The most elementary require-
ments of a model transformation are syntactic.

– The minimal requirement is to assuresyntactic correctness, i.e., to guarantee that
the generated model is a syntactically well–formed instance of the target language.

2



CSDUML 2003: Workshop on Critical Systems Development in UML
September, 2003, San Francisco, USA, Technical Report TUM-I0323, pp. 63–78,

– An additional requirement (calledsyntactic completeness) is to completely cover
the source language by transformation rules, i.e., to prove that there exists a corre-
sponding element in the target model for each construct in the source language.

However, in order to assure a higher quality of model transformations, at least the
following semantic requirementsshould also be addressed.

– Termination: The first thing we must also guarantee is that a model transformation
will terminate. This is a very general, and modeling language independent semantic
criterion for model transformations.

– Uniqueness (Confluence, functionality):As non-determinism is frequently used
in the specification of model transformations (as in the case of graph transformation
based approaches) we must also guarantee that the transformation yields a unique
result. Again, this is a language independent criterion.

– Semantic correctness (Dynamic consistency):In theory, a straightforward cor-
rectness criterion would require to prove the semantic equivalence of source and tar-
get models. However, as model transformations may also define aprojectionfrom
the source language to the target language (with deliberate loss of information),
semantic equivalence between models cannot always be proved. Instead we define
correctness properties(which are typically transformation specific)that should be
preserved by the transformation.

Unfortunately, related work addressing these correctness criteria of model transfor-
mations is very limited. Syntactic correctness and completeness was attacked in [25]
by planner algorithms, and in [9] by graph transformation. Recently in [14], sufficient
conditions were set up that guarantee the termination and uniqueness of transforma-
tions based upon the static analysis technique of critical pair analysis [10]. However, no
approaches exist to reason about the semantic correctness of arbitrary model transfor-
mations, when transformation specific properties are aimed to be verified.

Our contribution In this paper, we present a model-level, modeling language indepen-
dent and highly automated framework (in Sec. 2) to formally verify by model checking
that a model transformation (specified by metamodeling and graph transformation tech-
niques) from an arbitrary well-formed model instance of the source modeling language
into its target equivalent preserves (language specific) dynamic consistency properties.
We demonstrate the feasibility of our approach (in Sec. 3) on verifying a semantic prop-
erty of a complex model transformation from UML statecharts to Petri nets.

The main benefit of our approach (in contrast to related solutions such as [8]) is that
it can be adapted to arbitrary modeling languages taken from both software engineer-
ing and mathematical domains on a very high level of abstraction. More specifically,
the transformation designers use the same visual notation (based on metamodeling and
graph transformation) to capture the semantics of modeling languages and model trans-
formations between them. Then our tools automatically (i) carry out the transformation
from the source UML model into the target mathematical domain, and generate (ii) a
model checking description to verify the correctness of the model transformation be-
tween the source and target model.

3



CSDUML 2003: Workshop on Critical Systems Development in UML
September, 2003, San Francisco, USA, Technical Report TUM-I0323, pp. 63–78,

2 Automated Formal Verification of Model Transformations

We present an automated technique to formally verify (based on the model checking
approach of [22]) the correctness of the model transformation of a specific source model
into its target equivalent with respect to semantic properties.

2.1 Conceptual overview

A conceptual overview of our approach is given in Fig. 1 for a model transformation
from an fictitious modeling languageA (which will be UML statecharts for our demon-
strating example later on) toB (Petri nets, in our case).

User
model B

Transition
system A

Transition
system B

model A
User

Metamodel A

Graph Trans A

Metamodel B

Graph Trans B

Model−level

Meta−level

transformation rules

automatic generation

automatic
generation

automatic
generation

well−formed? well−formed?

p <=> q?

validation

p? q?
verification verification

Modeling language A Modeling language B

(no conflict)

Fig. 1.Model level formal verification of transformations

1. Specification of modeling languages. As a prerequisite for the framework, each
modeling language (bothA andB) should be defined precisely using metamodel-
ing and graph transformation techniques. We demonstrated in, for instance, [21,24]
that many (we believe that all) languages in a realization of the MDA may have a
semantics defined in this visual way, which is closely related to the UML philoso-
phy.

2. Specification of model transformations. TheA2B model transformation should
be also specified by a set of (non-conflicting) graph transformation rules. The prac-
tical feasibility of such a solution has been demonstrated in many papers, see,
e.g., [23] for an overview.

3. Automated model generation. For any specific (but arbitrary) well-formed model
instance of the source languageA, we derive the corresponding target model by

4



CSDUML 2003: Workshop on Critical Systems Development in UML
September, 2003, San Francisco, USA, Technical Report TUM-I0323, pp. 63–78,

automatically generated transformation programs (e.g., generated by VIATRA [5]
as tool support). The correctness of this automated generation step is proved in [23].

4. Generating transition systems. As the underlying semantic domain, a behav-
iorally equivalent transition system is generated automatically for both the source
and the target model on the basis of the provenly correct encoding presented in [22]
(and with a tool support reported in [19]).

5. Select a semantic correctness property. We select one semantic propertyp (at
a time) in the source languageA which is structurally expressible as a graphical
pattern composed of the elements of the source metamodel (and potentially, some
temporal logic operators).
Note that the formalization of these criteria for a specific model transformation is
not at all straightforward. In many cases, we can reduce the question to a reach-
ability problem or a safety property, but even in this case finding the appropriate
temporal logic formulae is non-trivial. More details on using graphical patterns to
capture static well-formedness properties can be found, e.g., in [9].

6. Model check the source model. Transition systemA is model-checked automati-
cally (by existing model checker tools like SPIN [11] or SAL [3]) to prove property
p. This model checking process should succeed, otherwise (i) there are inconsisten-
cies in the source model itself (averificationproblem occurred), (ii) our informal
requirements are not captured properly by propertyp (a validation problem oc-
curred), or (iii) the formal semantics of the source language is inappropriate as a
counter example is found which should hold according to our informal expectations
(anothervalidationproblem).

7. Transform and validate the property. We transform the propertyp into a prop-
ertyq in the target language (manually, or using the same transformation program).
As a potentially erroneous model transformation might transform incorrectly the
propertyp into propertyq, domain experts should validate that propertyq is really
the target equivalent of propertyp or a strengthened variant. Unfortunately, this val-
idation step typically requires human expertise and might not be fully automated.

8. Model check the target model. Finally, transition systemB is model-checked
against propertyq.

– If the verification succeeds, then we conclude that the model transformation is
correct with respect to the pair(p,q) of properties for the specific pairs of source
and target models having semantics defined by a set of graph transformation
rules.

– Otherwise, propertyp is not preserved by the model transformation and de-
bugging can be initiated based upon the error trace(s) retrieved by the model
checker. As before, this debugging phase may fix problems in the model trans-
formation or in the specification of the target language.

Note that at Step 2, we only require to use graph transformation rules to specify
model transformations in order to use the automatic program generation facilities of
VIATRA. Our verification technique is, in fact, independent of the model transforma-
tion approach (only requires to use metamodeling and graph transformation for speci-
fying modeling languages), therefore it is simultaneously applicable to relational model
transformation approaches as well.

5



CSDUML 2003: Workshop on Critical Systems Development in UML
September, 2003, San Francisco, USA, Technical Report TUM-I0323, pp. 63–78,

Naturally, the correctness of a model transformation can only be deduced if the
transformation preserveseverysemantic correctness property used in the analysis. Ob-
viously, it requires several runs of the model checker, which can be time-consuming.
Therefore, in [22], we assessed the expected run-time performance of our model check-
ing based approach on a verification benchmark. In [2], the same technique was applied
on architectural styles to check reachability properties. Both case studies demonstrated
that our technique is applicable to non-trivial examples (of medium-size).

Furthermore, it is worth noting that the time related to the model transformation
step, or to the automated generation of transition systems is still only a few percentage
of the entire verification process in case of non-trivial models.

Prior to presenting the verification case study of a model transformation, we briefly
discuss the pros and contras of meta-level and model-level verification of model trans-
formations.

2.2 Meta-level vs. model level verification of model transformations

In theory, it would be advisable toprove that a model transformation preserves certain
predefined semantic properties for any well-formed model instance, but this typically
requires the use of sophisticated theorem proving techniques and tools with a huge ver-
ification cost. The reason for that lies in the fact that proving properties even in a highly
automated theorem prover require a high-level of user guidance since the invariants de-
rived directly from metamodels should be typically manually strengthened in order to
construct the proof. In this sense, the effort (cost and time) related to the verification
of a transformation would exceed the efforts of design and implementation which is
acceptable only for very specific and critical applications.

However, the overall aim of model transformations is to provide a precise and au-
tomated framework for transforming the models of concrete applications (i.e., UML
models). Therefore, in practice,it is sufficient to prove the correctness of the model
transformation from the source UML model of the system under designagainst a set
of properties defined by transformation engineers (while it is typically out of scope to
demonstrate that the model transformation is correct for any source model). Thanks to
existing model checker tools and the transformation presented in [22], such a model-
level verification process can be highly automated. In fact, the selection of a pair(p,q)
of corresponding semantic properties is the only part in our framework that requires
user interaction and expertise.

Even if the verification of a specific model transformation is practically infeasible
due to state space explosion caused by the complexity of the target application, model
checkers can act as highly automated debugging aids for model transformations sup-
posing that relatively simply source benchmark models are available as test sets.

3 Case Study: From UML Statecharts to Petri Nets

We present an extract of a complex model transformation case study from UML stat-
echarts to Petri nets (denoted as SC2PN) in order to demonstrate the feasibility of our
verification technique for model transformations.

6



CSDUML 2003: Workshop on Critical Systems Development in UML
September, 2003, San Francisco, USA, Technical Report TUM-I0323, pp. 63–78,

The entire SC2PN transformation was originally designed and implemented as part
of a Hungarian research project (IKTA 065/2000 – A framework for the modeling and
analysis of dependable and safety critical systems) carried out in cooperation with in-
dustrial partners. Here UML statecharts are projected into Petri nets by this transforma-
tion in order to carry out (various kinds of) formal analysis such as functional correct-
ness based on semi-decision methods of Petri nets [17].

The primary aim of the project was to formally verify UML models, but we also
carried out the verification of the model transformation itself. Due to severe page lim-
itations, we can only provide an overview of the verification case study, the reader is
referred to [23] for a more detailed discussion.

3.1 Defining modeling languages by model transformation systems

Prior to reasoning about this model transformation, both the source and target model-
ing languages (UML statecharts and Petri nets) have to be defined precisely. For that
purpose, in [24] we proposed to use a combination of metamodeling and graph trans-
formation techniques: thestatic structureof a language is described by a corresponding
metamodelclearly separating static and dynamic concepts of the language, while the
dynamic operational semanticsis specified bygraph transformation.

Graph transformation (see [18] for theoretical foundations) provides a rule-based
manipulation of graphs, which is conceptually similar to the well-known Chom-
sky grammar rules but using graph patterns instead of textual ones. Formally, a
graph transformation rule (see e.g.addTokenR in Fig. 3) is a tripleRule =
(Lhs,Neg,Rhs), whereLhs is the left-hand side graph,Rhs is the right-hand side
graph, whileNeg is (an optional) negative application condition (grey areas in figures).
Informally,Lhs andNeg of a rule define thepreconditionwhileRhs defines thepost-
conditionfor a rule application.

Theapplication of a rule to amodel (graph)M (e.g., a UML model of the user)
alters the model by replacing the pattern defined byLhs with the pattern of theRhs.
This is performed by (i)finding a matchof theLhs pattern in modelM ; (ii) checking
the negative application conditionsNeg which prohibits the presence of certain model
elements; (iii)removinga part of the modelM that can be mapped to theLhs pattern
but not theRhs pattern yielding an intermediate modelIM ; (iv) addingnew elements
to the intermediate modelIM which exist in theRhs but cannot be mapped to theLhs
yielding the derived modelM ′.

In our framework, graph transformation rules serve as elementary operations while
the entire operational semantics of a language or a model transformation is defined by
amodel transformation system[25], where the allowed transformation sequences are
constrained by acontrol flow graph(CFG) applying a transformation rule in a specific
rule application modeat each node. A rule can be executed (i) parallelly for all matches
as in caseforall mode; (ii) on a (non-deterministically selected) single matching as in
case oftry mode; or (iii) as long as applicable (inloopmode).

UML statecharts as the source modeling languageAs the formalization of UML
statecharts (abbreviated as SC) by using this technique and a model checking case study

7



CSDUML 2003: Workshop on Critical Systems Development in UML
September, 2003, San Francisco, USA, Technical Report TUM-I0323, pp. 63–78,

were discussed in [21, 22], we only concentrate on the precise handling of the target
language (i.e., Petri nets) in this paper. We only introduce below a simple UML model
as running example and assume the reader’s familiarity with UML and metamodels.

Example 1 (Voting).The simple UML design of Fig. 2) models a voting process which
requires a consensus (i.e., unique decision) from the participants.

Processing Wait for
decision

finished^theVoter.yes

finished^theVoter.no

accept

decline

Statemachine of CalcUnit

c1: CalcUnit

c2: CalcUnit v: Voter

May accept

Decline

Wait for vote
no

yes^theCalcUnit.decline

yes

yes^theCalcUnit.accept

no^theCalcUnit.decline

no^theCalcUnit.decline

Statemachine
of Voter

Object diagram

VoterCalcUnit

theCalcUnit

theVoter

Class diagram

Fig. 2.UML model of a voter system

In the system, a specific task is carried out by multiple calculation unitsCalcUnit,
and they send their local decision to theVoter in the form of ayes or no message. The
voter may only accept the result of the calculation if all processing units voted for yes.
After the final decision of the voter, all calculation units are notified by anaccept or
a decline message. In the concrete system, two calculation units are working on the
desired task (see the object diagram in the upper right corner of Fig. 2), therefore the
statechart of the voter is rather simplified in contrast to a parameterized case.

Petri nets as the target modeling languagePetri nets (abbreviated as PN) are widely
used to formally capture the dynamic semantics of concurrent systems due to their easy-
to-understand visual notation and the wide range of available tools. A precise metamod-
eling treatment of Petri nets was discussed in [24]. Now we briefly revisit the metamodel
and the operational semantics of Petri nets in Fig. 3.

According to the metamodel (thePetri Net package in the upper left corner of
Fig. 3), a simple Petri net consists ofPlaces, Transitions, InArcs, andOutArcs as
depicted by the corresponding classes.InArcs are leading from (incoming) places to
transitions, andOutArcs are leading from transitions to (outgoing) places as shown
by the associations. Additionally, each place contains an arbitrary (non-negative) num-
ber of tokens). Dynamic concepts, which can be manipulated by rules (i.e., attributes
token, andfire) are printed in red.

The operational behavior of Petri net models are captured by the notion offiring a
transitionwhich is performed as follows.

8



CSDUML 2003: Workshop on Critical Systems Development in UML
September, 2003, San Francisco, USA, Technical Report TUM-I0323, pp. 63–78,

LHS RHS

LHS RHS LHS RHS

LHS RHS

fromPl

toTr

fromPl

toTr

fromPl

toTr

toPl

fromTr fromTr

toPl

fire=T fire=T

fire=T fire=T

enableTrR
<try>

<forall>
delFireR addTokenR

<forall>

delTokenR
<forall>

fail succeedTransition
fire:Bool

OutArc

Place
token:int

InArc

Petri Net

toTr
toPl fromPlfromTr

T:Trans
fire=T

T:Trans
fire=F

delFireR

T:Trans

A:InArc P:Place
token=0

T:Trans
fire=T

enableTransR

T:Trans

A:InArc P:Place
token>0

T:Trans

A:InArc P:Place
token−−

delTokenR

T:Trans

A:InArc P:Place

T:Trans

A:InArc P:Place
token++

addTokenR

Fig. 3.Operational semantics of Petri nets by graph transformation

1. First, thefire attribute is set to false for each transition of the net by applying rule
delFireR in forall mode.

2. A single enabled transitionT (i.e., when all the placesP with an incoming arcA to
the transition contain at least one token,token>0) is selected to be fired (by setting
thefire attribute to true) when applying ruleenableTransR in try mode.

3. When firing a transition, a token is removed (i.e., the countertoken is decremented)
from each incoming place by applyingdelTokenR in forall mode.

4. Then a token is added to each outgoing place of the firing transition (by increment-
ing the countertoken) in a forall application of ruleaddTokenR.

5. When no transitions are enabled, the net is dead.

3.2 Defining the SC2PN model transformation

Modeling statecharts by Petri nets Each SC state is modeled with a respective place
in the target PN model. A token in such a place marks the corresponding state as active,
therefore, a single token is allowed on each level of the state hierarchy (forming a token
ring, or more formally, aplace invariant). In addition, places are generated to model
messages stored in event queues of a statemachine. However, the proper handling of
event queues is out of the scope of the current paper, the reader is referred to [23].

Each SC step (i.e., a collection of SC transitions that can be fired in parallel) is
projected into a PN transition. When such a transition is fired, (i) tokens are removed
from source places (i.e., places generated for the source states of the step) and event

9



CSDUML 2003: Workshop on Critical Systems Development in UML
September, 2003, San Francisco, USA, Technical Report TUM-I0323, pp. 63–78,

queue places, and (ii) new tokens are generated for all the target places and receiver
message queues. Therefore, input and output arcs of the transition should be generated
in correspondence with this rule.

In Fig. 4, we present an extract of the Petri netExample 2.

c2_accept

may_accept

wait_for_vote

decline

v_yes

c1_accept

Fig. 4.The Petri net of the voter

equivalent of the voter’s UML model (see Fig. 2).
For improving legibility, only a single transi-
tion (leading from statemay accept to wait for
vote and triggered by theyes event) is shown.

The places of the voter subsystem are con-
stituted of the states of the voter (such as
wait for vote, may accept, decline) and mes-
sage queues for valid events (likeyes). The initial

state is marked by a token inwait for vote. The depicted transition has two incoming
arcs as well, one from its source statemay accept and one from the message queue of
the triggeringyes event. Meanwhile, this transition has multiple output places: one for
the target statewait for vote, and one for each target event queue of the participants
that receives the generatedaccept message.

Formalizing model transformations In [23], we formalize the SC2PN transformation
(to handle a meaningful subset of UML statecharts) by model transformation systems
consisting of more than 40 graph transformation rules. Feeding these high-level descrip-
tions to VIATRA [5], (an XMI representation of) a transformation program is generated
automatically, which would yield the target Petri net model (Fig. 4) as the output when
supplying (the XMI representation of) the voter’s UML model (Fig. 2) as the input.

Figure 5 gives a brief extract of transforming SC states into PN places. According
to this pair of rules, each initial state (i.e., that is active initially) in the source SC model
is transformed into a corresponding PN place containing a single token, while each
non-initial state (i.e., that is passive initially) is projected into a PN place without a
token.

RHSLHS

active2placeR

RHSLHS

passive2placeR

isAct=T
S:State R:

RefState
P:Place
token=1

src trg
isAct=T
S:State S:State

isAct=F
R:

RefState
P:Place
token=0

src trg

S:State
isAct=F

Fig. 5.Transforming SC states into PN places

It is worth noting that a model transformation rule in VIATRA is composed of ele-
ments of the source language (like StateS in the rule), elements of the target language
(like PlaceP), and reference elements (such as RefStateR). The latter ones are also
defined by a corresponding metamodel. Moreover, they provide bi-directional transfor-

10



CSDUML 2003: Workshop on Critical Systems Development in UML
September, 2003, San Francisco, USA, Technical Report TUM-I0323, pp. 63–78,

mations for thestatic partsof the models, thus serving as a basis for back-annotating
the results of a Petri net-based analysis into the original UML design.

3.3 Verification of the SC2PN model transformation

For the SC2PN case study, Steps 1–3 in our verification framework have already been
completed. Now, a transition system (TS) is generated automatically (according to [22])
for source and target models as an equivalent (model-level) representation of the oper-
ational semantics defined by graph transformation rules (on the meta-level).

Generating transition systems Transition systems are a common mathematical for-
malism that serves as the input specification of various model checker tools. They have
certain commonalities with structured programming languages (like C or Pascal) as the
system is evolving from a giveninitial stateby executing non-deterministic if-then-else
like transitions(or guarded commands) that manipulatestate variables. In all practical
cases, we must restrict the state variables to have finite domains, since model check-
ers typically traverse the entire state space of the system to decide whether a certain
property is satisfied. For the current paper, we use the easy-to-read SAL syntax for the
concrete representation of transition systems.

Our generation technique (described in [22] also including feasibility studies from a
verification point of view) enables model checking for graph transformation systems by
automatically translating them into transitions systems. The main challenge in such a
translation is two fold: (i) we have to “step down” automatically from the meta-level to
the model-level when generating model-level transition systems from meta-level graph
transformation systems, and (ii) a naive encoding of the graph representation of models
would easily explode both the state space and the number of transitions in the tran-
sition system even for simple models. Therefore our technique applies the following
sophisticated optimizations:

– Introducing state variables in the target transition system only for dynamic concepts
of a language.

– Including only dynamic parts of the initial model in the initial state of the transition
system.

– Collecting potential applications of a graph transformation rule by partially apply-
ing them on the static parts of the rule and generating a distinct transition (guarded
command) for each of them that only contains dynamic parts as conditions in
guards and assignments in actions.

Formalizing the correctness property Now, a semantic criterion is defined for the
verification process that should be preserved by the SC2PN model transformation. Note
that the term “safety criterion” below refers to a class of temporal logic properties pro-
hibiting the occurrence of an undesired situation (and not to the safety of the source
UML design).

Definition 1 (Safety criterion for statecharts). For all OR-states (non-concurrent
composite states) in a UML statechart, only a single substate is allowed to be active
at any time during execution.

11



CSDUML 2003: Workshop on Critical Systems Development in UML
September, 2003, San Francisco, USA, Technical Report TUM-I0323, pp. 63–78,

This informal requirement can be formalized by the following graphical invariant in
the domain of UML statecharts (cf. Fig. 6 together with its equivalent logic formula).
Informally speaking, it prohibits the simultaneous activeness of two distinct substates
S1 andS2 of the same OR-stateC (i.e., non-concurrent composite state) .

Unfortunately, it is difficult to estab-

isAct=T

S1:State O:ORState

isAct=T

S2:State

NEG subvertex subvertex

6 ∃ O : ORState, S1 : State, S2 : State :
subvertex(A,S1) ∧ subvertex(A,S2) ∧
isAct(S1) ∧ isAct(S2) ∧ S1 6= S2

Fig. 6.A sample graphical safety criterion

lish the same criterion on the meta level
in the target language of Petri nets since
the SC2PN transformation defines an ab-
straction in the sense that message queues
of objects are also transformed into PN
places (in addition to states). However,
in order to model check a certain sys-
tem, this meta-level correctness criterion
can be re-introduced on the model level.
Therefore, we first automatically instan-

tiate (the static parts of) the criterion on the concrete SC model (as done during the
transformation to transitions systems) to obtain the model level criterion of Fig. 7. Note
that the different (model level) patterns denote conjunctions, therefore, none of the de-
picted situations are allowed to occur.

isAct=T

wait_for_vote:
State

top:
ORState

isAct=T

may_accept:
State

NEG :subvertex :subvertex

isAct=T

wait_for_vote:
State

top:
ORState

isAct=T
State

decline:

NEG :subvertex :subvertex

isAct=T
State

decline: top:
ORState

isAct=T

may_accept:
State

NEG :subvertex :subvertex

¬(subvertex(top, wait for vote) ∧ subvertex(top,may accept) ∧
isAct(wait for vote) ∧ isAct(may accept)) ∧ ...

Fig. 7.Model level safety criterion

Note that our approach is not at all limited to verify only safety criteria. Further ver-
ification case studies (e.g., in [2, 22]) also covered reachability and liveness properties
or deadlock freedom.

Equivalent property in the target language This model level criterion is appropri-
ate to be transformed into an equivalent criterion for the Petri net model. As the state
hierarchy of statecharts is not structurally preserved in Petri nets (as Petri nets are flat)
the equivalents of the OR states are not projected into Petri nets. Therefore, the corre-
sponding property (shown in Fig. 8) contain only specific places having a token.

At this point, we need to validate whether the equality (= 1) or inequality checks (≥
1) are required in the property to be proved (i.e., what to do if there are multiple tokens

12



CSDUML 2003: Workshop on Critical Systems Development in UML
September, 2003, San Francisco, USA, Technical Report TUM-I0323, pp. 63–78,

token=1
Place

may_accept:
Place

token=1

wait_for_vote:

NEG

token=1
Place

decline:
Place

token=1

wait_for_vote:

NEG

Place
token=1

decline:

token=1
Place

may_accept:

NEG

¬(token(wait for vote) = 1 ∧ token(may accept) = 1) ∧ ...

Fig. 8.The Petri net equivalent of the model level safety criterion

in a single place). We may conclude that checking equality is also sufficient, however,
checking the version with inequality definitely strengthens the property, therefore we
can also decide to prove something stronger in the Petri net model.

Obviously, constructing the pair of properties to be proved for property preservation
is non-trivial and requires a certain insight into the source and target languages and their
transformation. Therefore the generation of a target propertyq from a source property
p cannot always be automated.

Model checking the target modelGiven (i) a system model in the form of a transition
systemTS (with semantics defined as a Kripke structure), and (ii) a propertyφ, the
model checking problemcan be defined as to decide whetherφ holds on all execution
paths of the system (i.e., whetherTS |= φ).

Therefore, as the final step of our framework, the model checker is supplied with the
transition system of the Petri net model and the textual representation of the propertyq.
As the places derived from the states of the same OR-state form a place invariant (with a
single token circulating around), the model checker easily verifies even the strengthened
property.

As a conclusion for our case study, the SC2PN model transformation preserved our
sample correctness property for a specific source statechart model and its target Petri net
equivalent. Additional correctness properties can be handled similarly. Unfortunately,
for space considerations, we omitted the formal verification of property in the source
SC model (Step 6), which could be performed identically to the handling of the target
PN model.

4 Conclusions and Future Work

We presented a model-level, modeling language independent and highly automated
technique to formally verify by model checking that a model transformation from a spe-
cific (but arbitrarily chosen) well-formed model instance of a source modeling language
into its target equivalent preserves (language specific) dynamic consistency properties.
We demonstrated the feasibility of our approach by verifying a semantic correctness
property for a complex model transformation from UML statecharts to Petri nets.

Naturally, as based on model checking our technique has practical limitation im-
posed by the state explosion problem. Therefore, in the future, we aim to improve our
automated encoding into transition systems to better exploit the built-in facilities of

13



CSDUML 2003: Workshop on Critical Systems Development in UML
September, 2003, San Francisco, USA, Technical Report TUM-I0323, pp. 63–78,

model checkers (like partial order reduction or symmetries) to allow the verification of
larger scale model transformations.

Further research should also aim at automating the transformation of semantic cor-
rectness properties. We think that our model transformation technique can be extended
to handle this case as well. As a result, the same specification technique would be used
for all transformations in our verification framework.

References

1. D. Akehurst and S. Kent. A relational approach to defining transformations in a metamodel.
In J.-M. J́eźequel, H. Hussmann, and S. Cook (eds.),Proc. Fifth International Conference on
the Unified Modeling Language – The Language and its Applications, vol. 2460 ofLNCS,
pp. 243–258. Springer-Verlag, Dresden, Germany, 2002.

2. L. Baresi, R. Heckel, S. Thöne, and D. Varŕo. Modeling and analysis of architectural styles.
In Proc ESEC 2003: European Software Engineering Conference. Helsinki, Finland. In
press.

3. S. Bensalem, V. Ganesh, Y. Lakhnech, C. Munoz, S. Owre, H. Rueß, J. Rushby, V. Rusu,
H. Säıdi, N. Shankar, E. Singerman, and A. Tiwari. An overview of SAL. In C. M. Holloway
(ed.),LFM 2000: Fifth NASA Langley Formal Methods Workshop, pp. 187–196. 2000.

4. A. Bondavalli, M. Dal Cin, D. Latella, I. Majzik, A. Pataricza, and G. Savoia. Dependability
analysis in the early phases of UML based system design.International Journal of Computer
Systems - Science & Engineering, vol. 16(5):pp. 265–275, 2001.

5. G. Csert́an, G. Huszerl, I. Majzik, Z. Pap, A. Pataricza, and D. Varró. VIATRA: Visual
automated transformations for formal verification and validation of UML models. InProc.
ASE 2002: 17th IEEE International Conference on Automated Software Engineering, pp.
267–270. IEEE Press, Edinburgh, UK, 2002.

6. J. de Lara and H. Vangheluwe. AToM3: A tool for multi-formalism and meta-modelling. In
R.-D. Kutsche and H. Weber (eds.),5th International Conference, FASE 2002: Fundamental
Approaches to Software Engineering, Grenoble, France, April 8-12, 2002, Proceedings, vol.
2306 ofLNCS, pp. 174–188. Springer, 2002.

7. G. Engels, R. Heckel, and J. M. Küster. Rule-based specification of behavioral consistency
based on the UML meta-model. In M. Gogolla and C. Kobryn (eds.),UML 2001: The
Unified Modeling Language. Modeling Languages, Concepts and Tools, vol. 2185 ofLNCS,
pp. 272–286. Springer, 2001.

8. G. Engels, R. Heckel, J.-M. K̈uster, and L. Groenewegen. Consistency-preserving model
evolution through transformations. In J.-M. Jéźequel, H. Hussmann, and S. Cook (eds.),
Proc. Fifth International Conference on the Unified Modeling Language – The Language
and its Applications, vol. 2460 ofLNCS, pp. 212–227. Springer, Dresden, Germany, 2002.

9. J. H. Hausmann, R. Heckel, and S. Sauer. Extended model relations with graphical consis-
tency conditions. InUML 2002 Workshop on Consistency Problems in UML-based Software
Development, pp. 61–74. Blekinge Institute of Technology, 2002. Research Report 2002:06.

10. R. Heckel, J. M. K̈uster, and G. Taentzer. Confluence of typed attributed graph transfor-
mation systems. In A. Corradini, H. Ehrig, H.-J. Kreowski, and G. Rozenberg (eds.),Proc.
ICGT 2002: First International Conference on Graph Transformation, vol. 2505 ofLNCS,
pp. 161–176. Springer, Barcelona, Spain, 2002.

11. G. Holzmann. The model checker SPIN.IEEE Transactions on Software Engineering,
vol. 23(5):pp. 279–295, 1997.

12. G. Huszerl and I. Majzik. Quantitative analysis of dependability critical systems based on
UML statechart models. InHASE 2000, Fifth IEEE International Symposium on High As-
surance Systems Engineering, pp. 83–92. 2000.

14



CSDUML 2003: Workshop on Critical Systems Development in UML
September, 2003, San Francisco, USA, Technical Report TUM-I0323, pp. 63–78,

13. J.-M. J́eźequel, W.-M. Ho, A. L. Guennec, and F. Pennaneac’h. UMLAUT: an extendible
UML transformation framework. In R. J. Hall and E. Tyugu (eds.),Proc. of the 14th IEEE
International Conference on Automated Software Engineering, ASE’99. IEEE, 1999.

14. J. M. K̈uster, R. Heckel, and G. Engels. Defining and validating transformations of UML
models. InProc. VLFM’03: International Conference on Visual Languages and Formal
Methods. Submitted.

15. D. Milicev. Automatic model transformations using extended UML object diagrams in mod-
eling environments.IEEE Transactions on Software Engineering, vol. 28(4):pp. 413–431,
2002.

16. Object Management Group.UML Profile for Schedulability, Performance and Time. http:
//www.omg.org .

17. A. Pataricza. Semi-decisions in the validation of dependable systems. InSuppl. Proc. DSN
2001: The International IEEE Conference on Dependable Systems and Networks, pp. 114–
115. G̈oteborg, Sweden, 2001.

18. G. Rozenberg (ed.).Handbook of Graph Grammars and Computing by Graph Transforma-
tions: Foundations. World Scientific, 1997.

19. Á. Schmidt and D. Varŕo. CheckVML: A tool for model checking visual modeling languages.
In Proc. UML 2003: 6th International Conference on the Unified Modeling Language. Ac-
cepted paper.

20. A. Scḧurr. Specification of graph translators with triple graph grammars. In . Tinhofer (ed.),
Proc. WG94: International Workshop on Graph-Theoretic Concepts in Computer Science,
no. 903 in LNCS, pp. 151–163. Springer, 1994.

21. D. Varŕo. A formal semantics of UML Statecharts by model transition systems. In A. Corra-
dini, H. Ehrig, H.-J. Kreowski, and G. Rozenberg (eds.),Proc. ICGT 2002: 1st International
Conference on Graph Transformation, vol. 2505 ofLNCS, pp. 378–392. Springer-Verlag,
Barcelona, Spain, 2002.

22. D. Varŕo. Automated formal verification of visual modeling languages by model checking.
Journal of Software and Systems Modelling, 2003. Accepted to the Special Issue on Graph
Transformation and Visual Modelling Techniques.

23. D. Varŕo. Automated Model Transformations for the Verification and Validation of IT Sys-
tems. Ph.D. thesis, Budapest University of Technology and Economics, Department of Mea-
surement and Information Systems, 2003. Submitted.

24. D. Varŕo and A. Pataricza. VPM: A visual, precise and multilevel metamodeling framework
for describing mathematical domains and UML.Journal of Software and Systems Modelling,
2003 (1):pp. 1–24.

25. D. Varŕo, G. Varŕo, and A. Pataricza. Designing the automatic transformation of visual
languages.Science of Computer Programming, vol. 44(2):pp. 205–227, 2002.

26. J. Whittle. Transformations and software modeling languages: Automating transformations
in UML. In J.-M. J́eźequel, H. Hussmann, and S. Cook (eds.),Proc. Fifth International
Conference on the Unified Modeling Language – The Language and its Applications, vol.
2460 ofLNCS, pp. 227–242. Springer-Verlag, Dresden, Germany, 2002.

15


