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Chapter 1

Introduction

The availability of low-cost, but highly complex o�-the-shelf programmable components

(PLDs), microprocessors, and ASIC technologies allows to implement very complex ap-

plications in digital systems even for small enterprises, and not only for the market

leaders in state-of-the-art technologies, like some �ve years ago. Since many of the small

enterprises can not dominate the implementation technologies of these complex appli-

cations, recent e�orts aim at the reduction of cost and time of the design process by

developing automated, integrated environments for system engineering.

The common characteristic of these automated design methods is, that they rely on a

mathematical model of the system, which is kept up-to-date during the design; therefore,

automatic evaluation of system properties is possible in each phase of the design. Further

feature is that activities earlier performed only after the �nal engineering design are

pushed forward into an early design phase, thus allowing a radical shortening of the

design-feedback loop, that leads to a signi�cant reduction in design time, for a price

of a tolerable overhead. Last but not least, the use of automated design technologies

radically improves the product's design quality as well as the quality of service provided

by the system.

As even more applications, like process control, transport and automation systems,

include safety related aspects, dependability becomes an important design issue. De-

pendability is the trustworthiness of a computer system such that reliance can justi�ably

be placed on the service it delivers. The main insu�ciency of design automation sys-

tems nowadays originates in the lack of an integrated support for the follow-up phases

of dependability analysis: reliability analysis, safety analysis, diagnostic design.

In order to avoid costly re-design cycles, dependability analysis has to be pushed

into early phases of system design as well. As part of dependability analysis, diagnostic

design provides the system's diagnostic plan, the aim of which is to locate the faults

within the system by means of executing the test set of the system. By localizing the

faults, that can then be repaired by the maintenance personal, a properly elaborated

diagnostics can largely increase the availability of the system. Integrated diagnostics

aims to maximize the e�ectiveness of diagnostics by integrating the individual tasks of
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testability, testing, maintenance aiding. Therefore, integrated diagnostics e�ectively can

be used in system design environments that aim early diagnostic design.

1.1 Problem Statement

The aim of this work is to overcome the above mentioned problems by providing a

framework, that can be used even in early phases of the design. It should be organically

integrated into the design 
ow, and has to give support for the solution of model-

ing, model checking, fault simulation, test generation, and testability analysis related

problems that arise during the design of fault-tolerant computing systems. The main

requirements for such an approach can be summarized as:

� There is a need for a high-level, hierarchical, model-based approach in diagnostic

design which results from the design process itself: current VLSI approaches specify

the design in terms of building blocks and libraries of modules and standard-cells

are used.

� Modeling of uncertainty has to be solved in the approach, since in early phases

of a design process, modeling is done at a high-level of abstraction. Here the

lack of information about lower level implementation details leads to signi�cant

under-de�nition of the components.

� Due to re�nement at the lower levels of abstraction, the models become more

and more precise and uncertainty decreases. Mechanisms are required to control

information addition in order to keep and check the consistency of the model.

� The modeling approach has to support traditional, functional evaluations, e.g.

validation, performance analysis, temporal analysis.

� Diagnostic design has to be solved within the approach by providing test genera-

tion, testability analysis, and test set optimization.

� The e�ciency of the evaluation tools is not of primary concern at the suggested

level of modeling, as the models will be of a moderate size because of the high-

level of abstraction and aimed at is only a prototype of the testability analysis

framework.

1.2 Previous Work

Since our aim is to integrate system design and dependable design into a common frame-

work, the presentation of previous work is divided into two parts. The �rst part gives

an overview of the current design environments with special emphasis on system design.

The second part gives a summary of well known frameworks for dependable design and

dependability analysis.
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low-level high-level architecture design
properties

logic synthesis HW SW HW-SW

commercially available + + + -

modeling background non-formal semi-formal semi-formal non-formal

maturity level mature usable usable prototypes

standardized language EDIF, VHDL - UML, SDL -

Table 1.1: Classi�cation of CAD tools in computer design

1.2.1 CAD tools for system design

A large number of CAD tools have been implemented during the last ten years in order

to support the design of computing systems. A rough classi�cation of these CAD tools

can be found in Table 1.1.

Since CAD tools have been used for at least 5 years for low-level logic synthesis,

they are far beyond their childhood and mature commercially available examples ex-

ist. One of the most widely used tools is AutoLogic [http://www.mentor.com]. The

common characteristic of these tools is that they rely on non-formal models. They

accept the circuit description in some standardized description language, e.g. EDIF

[http://www.edif.org], VHDL [IEE93] and generate ASIC layouts, FPGA or PLD

mappings. They can cope with very large designs, size usually above hundreds of thou-

sands of logic-gate equivalents, but they do not provide a way to design an application

of such size or even not to evaluate parameters of the design. Therefore, they can not

be used for high-level design.

Tools for high-level architecture design fall into three categories: software (SW)

design, hardware (HW) design, and HW-SW codesign. The various approaches and

tools do not have such a long history as logic synthesis CAD programs. Tools for

SW and HW architecture design are built in the last 2-3 years, they are commercially

available, but they are not fully mature yet. On the other hand HW-SW codesign is

a very young discipline where merely prototypes of academic institutions exist. One

exception is the tool Ptolemy, which was bought by Hewlett Packard in Summer 1997,

and its alpha version is sold currently.

High-level SW design aims at automatic program generation for a given programming

language from a high-level description. The description language is di�erent for the

various tools and modeling approach, but recently more and more tool providers start

to use the Uni�ed Modeling Language (UML), that has been standardized in January

1997 by IEEE and IBM. (For the description of the 1.1 Version from July 1997 please

refer to [http://www.rational.com].) The target language largely depends on the task

the tools are used for. For general applications usually C++ (or other object oriented

language) is used, while for embedded control applications C or assembly is preferred.

The semi-formal nature of these tools originates in the fact, that rely on a formal model,
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properties Rational Rose ObjectGEODE Telelogic Tau

input language UML OMT, SDL SDL, TTCN

target language C++ C, C++ C++

provider Rational Corp. Verilog Telelogic

http www.rational.com www.verilog.fr www.telelogic.se

evaluations model checking model checking model checking

code gen. test cases test cases

simulation simulation

code gen. code gen.

Table 1.2: Tools for high-level software design

but in the evaluation phase of the design no formal methods are used, most commonly

only some kind of simulation is provided. A few tools for SW design are shown in

Table 1.2. They, and the others not mentioned here can only deal with design of SW,

no emphasis is put on the diversity of evaluation possibilities and dependable design is

fully neglected.

High-level HW design aims at automatic generation of the hardware in a given hard-

ware description language from a more abstract, higher than logic-gate level (usually

architecture level) description. Modeling languages range from state charts to activity

charts, synchron- or asynchron data
ow notation, etc. The target language of the tools

are standardized low-level hardware description language, usually VHDL or VerilogHDL.

The semi-formal property of these tools is due to the missing formal algorithms during

model evaluation and model re�nement. Only a few of the tools provides formal vali-

dation of the design, most of them supports only model checking. A few tools for HW

design are shown in Table 1.3. A common characteristic of all these tools is that they

do not support the various evaluations necessary during the design, they provide only

a controlled quality of the implementation process. An exception is NP-Tools, within

which formal validation of the model is possible but support for design is rather poor

(e.g. code generation is very limited). In general, dependable design is with these tools

is impossible.

Recently a lot of e�ort is put into the combination of high-level HW and SW design

approaches, in order to aim at an even higher level of system design. The approach is

called HW-SW codesign. It aims at the joint speci�cation, design, and synthesis of mixed

hardware-software systems and as such it starts from a high-level formal description of

the system and generates, usually, C or C++ code for the SW modules of the system

and VHDL description of the HW modules. HW-SW codesign environments date back

to 1995 when their �rst example Ptolemy came out. They are still in development

phase, only prototypes of academic institutions exists, that are already used by well

known industrial companies to evaluate case studies. The three mostly known tools
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properties Statemate MAGNUM NP-Tools

input language State Charts prop. logic

target language Verilog, VHDL Verilog

provider I-logix Logikkonsult

http www.ilogix.com www.lk.se

evaluations model checking simulation

simulation validation

code gen. code gen.

Table 1.3: Tools for high-level hardware design

properties Ptolemy Cosmos Polis

input language DF C, VHDL CFSM

target language C, m56000, VHDL C, VHDL C, VHDL

provider Berkeley Imag Berkeley

http ptolemy.eecs.berkeley.edu www.imag.fr www-cad.eecs.berkeley.edu

evaluations simulation simulation simulation

code gen. code gen. code gen.

Table 1.4: Tools for HW-SW codesign

are presented in Table 1.4. Many of them can not boast about a formal mathematical

background that makes the use of formal methods impossible. Developers of dependable

applications can hardly exploit the bene�ts of these tools, since they lack a support for

fault modeling.

1.2.2 CAD frameworks for dependable design

A number of CAD frameworks have been implemented during the last ten years in order

to support the design of dependable computing systems. Many of the tools satis�es one

or more of our previously stated criteria, but no one satis�es them all. In the following

a short overview is given of the most important dependability evaluation methods and

tools (Table 1.5 shows a comparison of them). They are stable and mature represen-

tatives of a class of tools for the given application areas. The three previously shown

HW-SW codesign tools are also given in the table in order to be able to compare their

properties to the necessary criteria, since our aim is to embed dependability analysis

into HW-SW codesign.

Ptolemy[ELWW95] (Berkeley, USA): Ptolemy is a 
exible foundation upon which

to build prototyping environments. Several such environments have been built,

including data
ow-oriented graphical programming for signal processing, discrete-
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properties Ptolemy Cosmos Polis Depend PANDA

description (codesign) codesign codesign reliability reliability

modeling language DF VHDL, C CFSM PN, MC PN

hierarchy + + + - -

re�nement - - (+) - -

uncertainty - - - - -

general evaluation + - + - -

dep. evaluation - - - + +

ATPG - - - - -

testability analysis - - - - -

properties UltraSAN Surf-2 BudaTEST Turbo Tester Int.Diag.

description reliability reliability ATPG ATPG testability

modeling language SAN MC, GSPN VHDL AG TCDG

hierarchy + - - + -

re�nement - - - - -

uncertainty - + - - +

general evaluation + - - - -

dep. evaluation + + - - -

ATPG - - + + -

testability analysis - - - (+) +

Table 1.5: CAD Frameworks

event modeling of communication networks, register-transfer-level circuit design,

synthesis environment for embedded software, and design assistants for hardware-

software codesign. The Ptolemy system is fundamentally extensible. Users can

create new component models, new design process managers, and even entirely

new programming environments.

Unfortunately codesign support is not fully matured yet, automated design feed-

back and re�nement are missing. The synchronous data
ow models are best suit-

able for DSP applications but their usage is very restricted in the �eld of general

digital computing systems. From the palette of built-in evaluation support de-

pendability evaluation is missing.

COSMOS (Imag, France): COSMOS is a codesign methodology and tools aimed at the

design and synthesis of complex mixed hardware-software systems. The main steps

needed in order to transform a system-level speci�cation into a mixed hardware-

software one are:

� system level design and synthesis
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� communication synthesis

� architecture mapping

COSMOS is still in its childhood: from the mixed VHDL (for the HW components)

and C (for SW components) model only code generation is supported, no other

evaluation is possible, but the concept of COSMOS is promising.

POLIS[BCJ+97] (Berkeley, USA): The POLIS system is centered around a single Fi-

nite State Machine-like representation. A Codesign Finite State Machine (CFSM),

like a classical Finite State Machine, transforms a set of inputs into a set of outputs

with only a �nite amount of internal state. The di�erence between the two mod-

els is that the synchronous communication model of classical concurrent FSMs is

replaced in the CFSM model by a �nite, non-zero, unbounded reaction time. This

model of computation can also be described as Globally Asynchronous, Locally

Synchronous. CFSMs are also synthesizable and veri�able models, because many

existing theories and tools for the FSM model can be easily adapted for CFSM.

The model allows the following evaluations:

� high level language translation

� formal veri�cation

� system co-simulation (uses Ptolemy as a simulation engine)

� design partitioning

� hardware synthesis

� interfacing implementation

POLIS is a typical codesign environment, that supports many evaluation meth-

ods that are necessary during digital system design. In POLIS re�nement is not

supported, although FSMs would allow it, and the CFSM model is originated

from FSM. Description of non-determinism is not supported even for the earliest

models, that makes the evaluation of high-level models questionable.

Depend (NASA, USA): DEPEND is a simulation-based environment especially geared

for the design and evaluation of mission/life critical systems. Using DEPEND, a

designer can analyze an entire system under various realistic stress conditions to

determine the types of faults to which it is especially vulnerable. The designer

can also study the dynamic interactions between the components in the system

and identify the major impediments to dependability. As a modeling language

DEPEND uses Petri Nets and stochastic processes (Markov chains).

� availability

� mean time between failures, mean time between repairs

� coverage
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� fault isolation times, repair times

� error latencies

DEPEND focuses only on system-level models, and its �eld of evaluation is re-

stricted to classical reliability measures. Diagnostic design and testability analysis

is not supported at all.

PANDA (University of Erlangen, Germany) PANDA is a software tool for the anal-

ysis of timed Petri nets. It is focused on the area of modeling of fault-tolerance

strategies for distributed systems with the object of improving their e�ciency. In

PANDA both transient and steady-state analysis are available. The main capabil-

ities of PANDA are:

� Inclusion of optimization methods. Since modeling tools such as Petri nets

are often used at the design phase, the ability to automatically perform op-

timization according to selected target functions and boundary conditions is

an attractive feature of the software package.

� Parallel computing. The mathematical analysis of Petri-nets frequently re-

quires the solution of extremely large systems of equations. The ability to use

modern parallel architectures gives access to the substantially larger memories

and computing performance of these machines.

� Fault models. PANDA includes additional fault-modeling tools for designing

success diagrams and fault trees and converting them automatically into Petri

nets.

PANDA su�ers all the restrictions of the usual Petri net based dependability eval-

uation tools: there is no support for hierarchical modeling, testability analysis,

test generation and uncertainty modeling is restricted.

UltraSAN[SIQW95] (UIUC, USA): UltraSAN is a software package for model-based

evaluation of systems represented as stochastic activity networks (SANs). The

graphical user interface allows for easy speci�cation of the desired models and

facilitates the generation of graphs and tables for the obtained results.

The model speci�cation process in UltraSAN is carried out in a hierarchical fash-

ion. On top of the composed model, reward structures can be used to de�ne

performance, dependability, and performability measures. To solve the speci�ed

model, UltraSAN provides analytic solvers as well as discrete-event simulators.

Although UltraSAN supports hierarchical modeling, the problem of model re�ne-

ment is not solved. The palette of general evaluations is restricted to performance

evaluation, while diagnostic design and testability analysis are missing from de-

pendability evaluation.
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Surf-2[Bo93] (LAAS-CNRS, France): Surf-2 is a software tool-box for evaluation sys-

tem dependability. System behavior may be modeled by either Markov chains or

Generalized Stochastic Petri Nets (GSPN). In the latter case, structural veri�ca-

tions are carried out before generating the reachability graph. The derivation of a

continuous-time Markov chain from a GSPN is performed from the markings that

make the timed transitions �rable. The measures of dependability are obtained by

processing the Markov chain. The tool provides for the evaluation of di�erent mea-

sures of dependability including pointwise measures, asymptotic measures, mean

sojourn times and, by superposing a reward structure on the behavior model, re-

ward measures such as expected performance and cost. The administration of

the models provides a support for processing a model up to the computation of

the numerical results. It allows the management of model libraries based on the

notions of an assigned model (assignment of numerical or symbolical values to the

parameters of the model) and a model folder (the speci�cation of computation

environment and common processing of several models).

Surf-2 is a classical GSPN based modeling tool, that supports dependability evalu-

ation, limited system veri�cation (based on reachability), and performance evalua-

tion. Unfortunately is lacks of hierarchical description in modeling, test generation,

testability analysis, support for uncertainty modeling.

BudaTEST[SPTP96] (TUB, Hungary): BudaTEST is a software package for func-

tional-level automatic test pattern generation (ATPG). The system is described

by an abstract VHDL model, usually the output of a high level synthesis tool.

The input architecture is converted into a constraint network, to which additional

constraints are added to represent the test generation problem. Thus ATPG is

solved as a constraint satisfaction problem (CSP) by means of a systematic search

in the state space of the variables. General constraint solving methods (prior

�ltering etc.) are employed, but the search is most accelerated by a special heuristic

control, characteristic to the TPG problem, which considers a number of cost

functions, mainly those related to data and fault propagation costs. A special

coloring algorithm is applied in order to explore propagation paths before type-

interpreted decisions are made.

Since BudaTEST is a specialized ATPG tool, it concentrates only on test pat-

tern generation, and does not deal with testability analysis or other aspects of

dependable design.

Turbo Tester (TUT, Estonia): Turbo Tester is a PC-based set of tools for digital

design and test. All of the test tools in TT are implementing algorithms based on

the original alternative graph (AG) theory. Instead of directly using the gate-level

description for solving test generation and simulation tasks, a higher structural

path level has been chosen. Turbo Tester could be used in a number of laboratory
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works, as:

� test pattern generation for digital circuits

� test quality and fault coverage analysis

� dynamic test analysis

� design for testability

� built-in self-test analysis

� fault diagnosis in digital circuits

Although Turbo Tester uses a hierarchical model, the re�nement rules between

di�erent levels of hierarchy are not de�ned. The set of tools gives a good coverage

of testability related problems, but general as well as dependability related evalu-

ations are not possible. The main drawback of the method and tools is, that they

do not support uncertainty modeling, even not at the highest level of the hierarchy.

Integrated diagnostics (Arinc, USA): Integrated diagnostics, especially the method

developed at Arinc, are a very good means for diagnostic design of digital com-

puting systems. The approach is based on the 
ow of information among the

components of the system. It is centered around the so called dependency rela-

tion, that describes test and conclusion dependency, i.e. the circumstances that

are necessary the test to fail. Various measures can be extracted from the test

conclusion dependency graph (TCDG):

� testability measures

� optimized test set

� test scheduling

� coverage of uncertain tests

The method is specialized to diagnostic design. No approach is given for the

production of dependency graph, nor for test generation. Neither dependability

nor general evaluation is possible. The model supports uncertainty computation,

but lacks hierarchy and re�nement.

Although the above tools together cover the whole application �eld, that was men-

tioned in the problem statement, none of them provides a su�ciently broad coverage.

Therefore, there is still a strong need for a framework that issues the many inter-related

aspects of dependable design.

1.3 Contribution of the Work

This work focuses on the �eld of design of digital computing and control systems, where

dependability of the computer is of primary concern. Emphasis is put on the �rst, early
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Figure 1.1: Design Flow of HW-SW Codesign

step of system design that consists of the iterative process of model construction, model

evaluation and model re�nement. Since the addressed systems are a highly complex

mixture of hardware and software components, HW-SW codesign is selected to be the

design approach into which diagnostic design is integrated.

HW-SW codesign is de�ned as the joint speci�cation, design, and synthesis of mixed

hardware-software systems [BBC+93]. HW-SW codesign is one of the most promising

new design methodologies for embedded systems consisting of mixed hardware and soft-

ware components. Its main advantage lies in the support for design automation and

design veri�cation through the whole design cycle. Its typical design 
ow is depicted in

Figure 1.1.

At the beginning of HW-SW codesign a mathematical model of the system is con-

structed from the system speci�cation and a component database by using a model

editor. Once the system model is de�ned an evaluation-re�nement loop is executed as

long as a su�ciently detailed, veri�ed model of the system is reached. The aim of this re-

�nement loop is to proceed in many steps from a system-level model down to a low-level

where technology assignment can be done. The "in-loop" evaluation has to make sure,

that the current model meets the requirements stated in the speci�cation. In Figure 1.2

the evaluation step is shown in more detail from the point of view of our work1. Once the

system model is veri�ed at the lowest-level, technology assignment is done, that replaces

the hardware-software separation step of earlier used design methods. After technology

assignment the software- and hardware components and the interfaces of the system are

1Shaded areas identify the topics to which this work contributes.
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de�ned. In this �nal phase system evaluation and automated synthesis is started.

In our version of an integrated design environment, in the �rst step of system design

the system is modeled by extended non-deterministic data
ow networks. At this level

of abstraction in structural design only the 
ow of data is modeled in the form of token


ow without any description of the data transformation performed by the components.

This is called uninterpreted modeling. At this level, primarily performance analysis and

optimization are aimed at and test generation and testability analysis can be started.

Through stepwise re�nement more and more structural and functional details are

incorporated into the initial model. As the system's structure and the data processing

functions of the components are increasingly exactly de�ned the inherent uncertainty of

the model decreases, leading to more exact analysis results. This more detailed system

is represented by interpreted modeling, where the token 
ow of uninterpreted modeling

are replaced by data 
ow, and data transformations are also considered. Test generation

and testability analysis are done in this phase. Test generation at this level delivers the

system-level diagnostic test set of the system.

Finally, after technology assignment and automated HW and SW synthesis, a back-

annotation step has to feed back information into the functional system model in order

to describe the �nal design. The back-annotated information contains the assignment of

functional units to HW and SW components. As a result, multiple behavioral faults, i.e.

faults originating in the same single physical fault due to hardware reuse but leading to

failure of two di�erent functional units, can be described by the model. Test generation



1.4. OUTLINE OF THE THESIS 13

and testability analysis are still possible, and the result of test generation is the low-level

tests of the components, e.g. self-test of system components.

Our fault modeling approach is based on the idea of modeling the fault e�ects and

their propagation similarly to the 
ow of data in the functional model. Tokens represent-

ing the data can be colored either as correct or as faulty. A set of error propagation paths

can be estimated by tracing their 
ow from the fault site to the outputs of the network.

Diagnostic uncertainty is introduced in order to express conditional error propagation.

This way the simpler simulation and test generation algorithms deliver a superset of

propagated fault e�ects in the system, but in the model all potential consequences of a

fault are incorporated.

A more detailed fault model and a more precise description of the reactions of func-

tional units to erroneous input values can be de�ned by using multi-valued logic. The

use of other guiding attributes in a user-de�ned coloring of the tokens and propagation

rules o�ers full freedom for the analysis of di�erent user requirements.

In subsequent steps of model re�nement, e.g. at register-transfer level, this global

overview of the system e�ectively supports test generation procedures by restricting the

search space of the signi�cantly more detailed model to the solutions of those from the

coarse model [FUT95]. Of course the whole process of model re�nement is only useful

if the results from a previous design phase can really be used to guide the evaluation of

the current phase model, leading to the mentioned restricted search space. Therefore,

the rules for model re�nement are de�ned.

A correspondence is shown between gate-level models and the data
ow modeling

approach. It gives the necessary background to try to adapt methods that are already

proved useful at logic circuits. For automatic test pattern generation the PODEM

algorithm is selected as an example. Adaptation prepares the algorithm to cope with

multi-valued fault model and modeling uncertainty.

For testability analysis a fault-dictionary based method is used. In our approach the

dictionary is constructed by concurrent fault simulation for the test set. It is shown,

that from the fault dictionary the test-conclusion dependency graph, the input model

of integrated diagnostics, can be extracted. Using integrated diagnostics the testability

measures of the system can be evaluated and diagnostic design is possible.

1.4 Outline of the Thesis

This work is usually written in third person singular. Whenever I wanted to emphasize

my contribution �rst person plural is used. The four theses are written in �rst person

singular. The work consists of seven chapters and �ve appendices. Since the various

tasks of the work can easily be separated they represent the main parts of the work

and are presented in Chapters 2, 3, 4, and 5. These four chapters start with a short

introduction of the topic, with the overview of previously done work, then our approach

and its contribution is presented. Therefore, overview of the various topics as a separate
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chapter is omitted.

Chapter 1 gives an introduction of the thesis. It presents the motivation of the work,

its contribution to the �eld of design automation of dependable systems, and the

outline of the thesis.

Chapter 2 presents the used data
ow notation and the systematic process of model

construction in the modeling approach. It gives an overview of the features of the

approach and a detailed example of a candy automaton.

Chapter 3 shows the technique of model re�nement for data
ow networks and de�nes

the rules of model re�nement in order to keep the consistency of the model during

information addition. An algorithm is presented with which re�nement of a model

can be checked automatically.

Chapter 4 discusses the methods for test generation and gives an algorithm for test

generation of the modeling approach. The algorithm is an adaptation of PODEM.

The functioning of the algorithm is presented in the example.

Chapter 5 introduces integrated diagnostics and shows how this approach can be used

for testability analysis in the modeling approach. It presents the proof of conver-

gence of testability measures regarding the original model when re�nement rules

are not broken. Testability analysis is shown on the example.

Chapter 6 gives an extensive application study. The whole process of modeling, test

generation, and testability analysis is presented for the well known MEMSY sys-

tem. During analysis the testability of three di�erent MEMSY con�gurations is

compared.

Chapter 7 presents a summary of this work and gives suggestions for topics of future

research and possible applications.

Appendix A gives the list of abbreviations and presents the symbols that are used

thorough this work.

Appendix B gives the summary of de�nitions and derivations that are used in this

work.

Appendix C contains the formal notation of the candy automation example that, be-

cause of its complexity, is omitted from previous chapters.

Appendix D presents the rather longish formal notation of the MEMSY model, and

describes one of its components, the CPU in detail.

Appendix E presents the lists of publications of the author that are appeared or ac-

cepted up to the �nishing of this work.



Chapter 2

Modeling Approach

The increasing complexity and diversity of applications demands advanced design meth-

ods for the development of both hardware and software [RB95, Uba92]. These methods

utilize the currently available new technologies such as system-level speci�cation and

simulation [Sch92], soft-prototyping, formal design and veri�cation [BBS93], high-level

synthesis [CW91, Cam79]. The common background of these technologies is, that they

rely on a proper modeling approach.

The choice of a modeling approach fundamentally depends upon the exact task that

the model is to be used for. During all phases of testing and diagnostic design, the

following most important tasks have to be executed: test generation, fault simulation,

testability analysis. Certainly it is desirable that besides the above tasks the approach

supports the execution of traditional design tasks like performance evaluation, formal

validation, etc. This way the designer has an homogeneous, integrated, model-based

design environment.

Since the aim of diagnostics is the identi�cation of the faulty component, component-

based models are normally used. Component-based models consist of an explicit descrip-

tion of the systems structure (i.e. the interconnections between components) together

with the description of each component. The model of the system is referred to as the

system model, while the models of components are called component models.

The success of the approach is e�ected by the method that is selected to describe

the functions of components into which the system is divided. The most commonly used

methods are: hardware or functional description languages [IEE93, Bro89], Petri nets

[Pet62, Mur89, Gen86, Jen90], di�erent types of system graphs [Uba92], data
ow net-

works [And89, Den85, JA91, Kah74, LM87], control 
ow-charts [Den85], binary decision

diagrams [Ake78],or statecharts [Har87, Har97]. Each of them leads to using di�erent

mathematics, di�erent fault models and therefore di�erent evaluation methods.

In the early phases of design one is usually interested only in the inputs and outputs of

the components and not in their internal representation. Therefore, component models

are functional or behavioral models that regard the component as a black-box. How-

ever, in most of the approaches instead of black-box models glass-box models are used
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properties: support for:

simple graphical representation, modu-

larity, compactness, hierarchical descrip-

tion

easy to survey model

direct support for black-box as well as

glass-box modeling

model construction is similar to the way

the designer thinks in early design phases

stepwise re�nement modeling in multiple phases of system

design

distributed nature, expressing both �ne-

and coarse grain parallelism

description of asynchronous, concurrent,

parallel actions

data-driven approach event-driven representation of real-time

computation

referential transparency, atomicity, infor-

mation protection (no sharing)

inherent support for modeling of fault-

tolerant applications

well de�ned mathematical formalism formal methods in the evaluation

functional behaviour system function is a composition of indi-

vidual functions

direct translation into process algebras,

timed Petri nets

validation and timing analysis

direct representation of information pro-

pagation

error propagation path are easily traca-

ble, simply check of timeliness and com-

munication delays

Table 2.1: Advantages of the data
ow modeling paradigm

[LCSC94]. In glass-box models details of the internal system representation are also de-

scribed. This includes a description of the internal state space of the component and/or

the internal distribution of the system into sub-components. The sub-components may

again be described in di�erent levels of detail (in a black-box view or in a glass-box

view), supporting model re�nement [Bro95, dBdRR90, Jon89a].

In [CGPT94, CPS96, CPS95, Cse96, CP96] reasoning can be found about data
ow

networks, to be the modeling method during diagnostic design. It was shown, that the

data
ow notation is well-suitable for conceptual modeling of computing systems in the

early design phases [BS93, Sch92], for early validation of computing systems [BBS93]

and for performance evaluation [CBBS94, BBC+97].

The main advantages of data
ow models as a description method for fault-tolerant

digital computing systems are summarized in Table 2.1. In the left column the prop-

erties of the data
ow approach are given, while the right column gives the advantages

these properties provide. In the early phase of system design only the 
ow of data and

the processing-related delay times are modeled in the form of token 
ows without any

description of the individual data transformation in the components.



2.1. DATAFLOW NETWORKS 17

Usually control related decisions (like implementation of the controller part as a

scheduler, control table or FPGA) are done in later steps of the design; therefore, the

neglection of data dependencies does not impose any problems during the modeling. This

means that the suggested data
ow description and error model is su�cient to describe

the system and meaningful architectural-level decisions can be done, without using a

more elaborated and complex formalism, e.g. statechart or VDM models . Since these

formalisms use data
ow graphs for the description of the structure, in subsequent steps

of the design, if it becomes necessary, the data
ow model can be transformed without

problems into the more elaborated models in order to describe control aspects of the

system with greater detail.

2.1 Data
ow Networks

The data
ow programming paradigm is used to describe asynchronous parallel compu-

tations, in which data is passed between the nodes of the computation through channels

realized by ideal FIFO queues [And89, Den85, KBB86, KS92, Lee91, LM87]. The behav-

ior of the nodes can be deterministic as �rstly presented by [Kah74] or non-deterministic

as showed by [Jon89b]. The latter formalism extended by the notion of time and prior-

ities [Can93] is the starting point of our modeling approach.

2.1.1 Informal Presentation of the Model

A data
ow network (DFN) is a set of nodes that execute concurrently and exchange

data items over unidirectional, point-to-point communication channels. (From now on

data items are called tokens.) The data
ow nodes represent the components of the

system, its states and describe their data propagation behavior by a simple input-output

relation. The channels of the data
ow network symbolize the interaction between the

components of the system. Internal channels link two nodes. Input/output channels

connect a single node to the outside world representing the primary inputs/outputs of

the system. Communication events occur when tokens are inserted into an input channel

(input event) or data items are removed from an output channel (output event). Input

events describe the arrival of data to the primary inputs, while output events describe

the appearance of result on the primary outputs of the system. Tokens represent the

data (i.e. messages) passed between the components. Tokens are characterized by their

color, that describes the properties of the modelled data (e.g. fault-free, faulty). The

graphical representation of a data
ow network is a data
ow graph (DFG), nodes of

which are drawn as boxes and channels of which are drawn as directed arcs.

The behavior of a node is de�ned by the set of �ring rules. A node starts a compu-

tation (executes a �ring rule) as soon as the tokens required by one of its �ring rules are

available in the input channels and it is in a proper state. After �nishing the computa-

tion tokens are produced onto the output channels and the node enters a new state. To
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the �rings execution time can be assigned, that denotes the time of the computation.

Since operation of a node is sequential, new computation can only be started after the

preceding one is �nished. Priority can be assigned to the �rings, to solve the problem

of computations that could be started concurrently.

2.1.2 Formalism of Data
ow Networks

Data
ow nodes are de�ned in form of 6-tuples that also consist the de�nition of the

possible token types. De�ning the token types locally for the node rather than globally

for the whole network allows to describe the transformations of the network and that

of the node more concisely and more precisely. It results that coherent mathematical

methods can be used to describe model re�nement and re�nement checking (see later).

De�nition 2.1 A data
ow node n is a tuple (In; On; Sn; s
0
n; Rn;Mn) where:

In - set of input channels

On - set of output channels

Sn - set of states

s0n - initial state, s0 2 Sn

Mn - set of tokens

Rn - set of �rings, rn 2 Rn is a tuple (sn;Xin; s
0
n;Xout; �)

sn; s
0
n - states before and after the execution of the �ring, sn; s

0
n 2 Sn

Xin - input mapping, Xin : In 7!Mn

Xout - output mapping, Xout : On 7!Mn

� - priority of the �ring, � 2 IN

;, the empty set is included inMn. It is necessary to be able to describe computations

that do not consume input tokens and/or do not produce output tokens on some of the

channels.

In the de�nition of mappings Xin and Xout the assumption is used that at a time at

most one token is moved by the �rings from/to a single channel. It makes the de�nitions

and proofs easier to survey, while it does not restrict the modeling power of the notation.

With a little e�ort they can be generalized for the case when more then one token is

moved at a time.

The meaning of �ring rule rn = (sn;Xin; s
0
n;Xout; 0) is that if node n is in state

sn and 8in 2 In contains at least the tokens Xin(in), then rn is potentially selected

for execution. Potentially means, that it is not sure that rn will be executed, since

multiple �rings can be selected for execution simultaneously, and only one of them will

be executed. The execution of rn removes Xin(in) tokens from 8in 2 In and outputs

Xout(jn) tokens onto 8jn 2 On. After execution the node changes its state from sn to

s0n.

The selection of transition to �re is done according to priority, i.e. from the set of

potentially executable �rings the one with the highest priority is selected. If more than
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outin
n

Figure 2.1: An Example Data
ow Network

one �rings have the same priority, then selection is done randomly. This causes a non-

deterministic behavior of the data
ow node and constitues the foundation of uncertainty

modeling.

De�nition 2.2 A data
ow channel is an unbounded FIFO queue. It is mapped to

exactly one node as an input channel and to exactly one node as an output channel.

The state of channel c is denoted by the sequence of tokens it contains: Sc = �1Mc,

where � denotes the Cartesian product, and Mc denotes the set of tokens the channel

can contain. The initial state of the channel is described by the null-sequence �.

If channel c is connected to nodes n1 as input and to n2 as output then for the token

sets Mn1 ;Mn2 ;Mc has to hold that Mn1 � Mc, Mn2 � Mc. Usually a single, homoge-

neous token set is used through the whole data
ow network. Unbounded channels are

necessary to ensure fully asynchronous operation of the nodes. A contrast of unbounded

channels are the 1-bounded channels that yield fully synchronous operation, i.e. a node

can only start the execution of a �ring if the output channels are empty. They are

empty, if the successor nodes �nished their operation that removed the tokens from the

channels.

De�nition 2.3 A data
ow network DFN is a tuple (N;C; S) where:

N - set of nodes

C - set of channels (I-input, O-output, and IN-internal channels)

S - set of states; Cartesian product of node and channel states

Note that the de�nition of DFN does not contain information about the connection

of channels and nodes explicitly; it is given in the de�nition of nodes.

An example

In Figure 2.1 a dummy example is given, in order to introduce the notation that is used

in the whole work. The formal description of the network is the following:

network DFN=(fng, fin,outg, f(s,0,0), (s,ok,0), (s,0,ok), (s,ok,ok)g)

nodes n=(fing, foutg, fsg, s, fok,;g, fr1g)

�rings r1=<ok;in=ok;ok;out=ok;0>

The token set consists of ; and a token called ok. The network is made of a single

node n and channels in and out. The node has a single state s, while the state of the
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channels is either ; or ok, i.e. channels are either empty or they contain an ok token.

For the sake of simplicity the FIFO is supposed to be 1-bounded. It is easily observable,

how the state of the network is composed from the node and channel states by Cartesian

product. Firings are usually printed in typewriter style. r1 in this case removes an

ok token from channel in and puts an ok token into channel out. The node remains in

state s.

Features of the formalism

If one considers our data
ow formalism, the description of the data
ow nodes correspond

to a production system with very simple rules. Both the condition and the action part

of the rules consist only a single state and a few tokens. It eliminates the usage of

rule matching, that will contribute to a simpler and more e�ective implementation of

the evaluation algorithms. This simplicity is also useful in the formal handling of the

models. In the real life many formalisms failed because of their complexity made the use

of formal methods extremly tedious if not impossible (e.g. colored Petri nets). Therefore

in the formal design of computer systems, the less complex formalisms are preferred (e.g.

plain Petri nets, BBDs).

Such a data
ow based production system is used in the market leader CAD tools

in early phases of design, that is called structural design. In structural design the data

dependencies and data transformation behavior of components can be neglected. That

is why in the �rst step uninterpreted data
ow modeling is suggested and the rule based

approach of AI could not be used e�ectively.

On the other hand, the simplicity of the formalism does not decrease its modelig

power, since relations in a most general form describe both the state transition and

the output (state transition relation, output relation). However, user friendliness of the

notation can be queried. If the formalism is used as an underlying formalism of modeling

in a CAD tool, a more comfortable way has to be provided to the user for model editing.

In this more comfortable editor the user can work with relations, functions, domain, and

codomain. This data
ow notation can be called extended data
ow networks. Thus the

user can de�ne an 8 bit full-adder as a function a+ b = c, where the domain is the set

of numbers that can be represented on 8 bits: a; b = [0; 255], while the codomain of the

function is the set of numbers that can be represented on 9 bits: c = [0; 511]. The 65536

rules that are necessary to describe the full-adder can be generated automatically.

In AI like complex rule based systems whole procedures can be used to describe the

condition- and action parts of the rules. As a result the rules will be complex, and as

such the completeness and consistency of the rule base can only hardly be checked, which

is a natural demand in dependable design, but imposes one of the greatest problems of

AI.

In contrast with it, at architectural level, which is above functional level, well struc-

tured dependable computing systems can easily be described by data
ow networks, and
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the �ring rules of the nodes will be simple. Therefore, the completness and correctness

of the rules can be checked locally for the individual data
ow nodes with little e�ort.

2.2 Model Extension

The data
ow formalism itself is suitable for modeling both fault-free and faulty systems.

However when modeling faulty systems, one has to incorporate into the model the basic

aspects of fault, fault e�ect, and fault propagation. Usually it is done by the systematic

extension of the fault-free model. This systematic extension process is based on the fault

model.

At logic-gate level the relationship is strong between the physical defect and the

fault. These fault models, e.g. the stuck-at model, are called physical fault models.

At higher levels of abstraction, where the tie is more tenuous, logical fault models are

used. For logical fault modeling the two most common methods are model perturbation

[Sch92, FUT95] and fault nodes in graph models [RS80, Uba94].

In model perturbation a systematic way is developed to perturb the device model.

For example possible control faults perturb the control points that switch between oper-

ation sequences. It is done usually by using if-then-else or case like structures. The list

of such perturbations becomes the fault list. A test is found for each fault in the list.

In graph models the nodes represent the components of the system. For each com-

ponent the precomputed faulty behaviour is stored in the nodes description. A fault

of a component is manifested in form of faulty output. For each component fault the

faulty output has to be propagated by a depth-�rst, forward search from the inputs of

the graph towards its outputs.

In this work the second method of logical fault modeling is used. It is more suitable

to the data
ow modeling approach, since it is a graph based method. A fault can occur

in a processing element, that is denoted by a data
ow node of the graph, and it is

propagated along the communication path, that is denoted by arcs of the graph.

The problem of generating the extended model must not be overlooked at high lev-

els of abstraction, where the relation is loose between the highly abstract component

description and the physical faults. Therefore; automatic generation of the extended de-

scription is hardly if at all possible. Besides manual model composition, two alternatives

are left to the designer to generate the extended model:

1. From the speci�cation of the system or from a design decision the speci�cation

of the component can be derived. For example the speci�cation states that the

system must made up of fail-safe components. It imposes constraints on the im-

plementation of the component: the extended model di�ers from the original one,

such that in the former one, the components are supposed to be fail-safe, e.g. some

self-testing facility has to be included into the component during implementation.



22 CHAPTER 2. MODELING APPROACH

2. A similar component was implemented previously and its design is stored in a

design library. If the designer decides that the same design should be used, the

high-level description can be abstracted from the low-level one by reversing the

rules of re�nement (see in the next chapter).

2.2.1 Fault Modeling

Our method is based on the idea of modeling the fault e�ects and their propagation

similarly to the 
ow of data in the functional model. In uninterpreted modeling, in the

simplest case the tokens that represent the data can be marked either as correct or as

faulty. In �ner modeling this two markings can be split into several other markings,

denoting di�erent kinds of faults. This process of labeling the tokens according to some

criteria is called coloring.

A more detailed fault model and a more precise description of the reactions of com-

ponents to erroneous input values can be de�ned by using multi-valued coloring. The

number of possible faults in the multi-valued fault model is limited only by the number

of simultaneously allowed di�erent token colors, which is theoretically unlimited but in

practical applications a too large number of token colors often results in unacceptably

long evaluation times. As an example of a multi-valued fault model, the tokens can be

qualitatively colored according to the severity of the fault e�ects:

� correct (refers to the fault-free operation)

� incorrect (may invoke only error propagation, like wrong input data is processed

by the CPU)

� fatal (blocking the further operation, e.g. an undetected wrong opcode input of a

CPU-like element)

� catastrophic (causes a damage in a component of the system)

As another example consider some 
oating point operations. The results can either

be:

� accurate (within a small range around of the correct value)

� acceptable (within a maximal range around the correct value)

� under
ow (below the lower limit of the acceptable range)

� over
ow (above the upper limit of the acceptable range)

In the suggested method the faults of the components are manifested in sending

tokens that are marked as erroneous. Note, that it strongly resembles the well known

gate-level stuck-at fault model of logical circuits, where the internal faults of logical
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gates are modeled by erroneous output values. Component faults are described by the

erroneous states of the node; therefore, the set of states of the node has to be extended

with the erroneous states. In case of faults the behavior of a component is denoted by

additional �ring rules of the node; hence, the set of �ring rules must also be extended.

Using such a fault model the set of error propagation paths can be estimated by

tracing the 
ow of tokens from the fault site in the system (erroneous node) through the

components (other error-free or erroneous nodes) to the primary outputs.

2.2.2 Uncertainty Modeling

Uncertainty describes the con�dence attached to a given state or behavior of the model

and can be used to represent the essentially subjective and incomplete knowledge about

the modeled system. Therefore, dealing with uncertainty is a crucial point of the mod-

eling method.

In digital systems one usually has to di�erentiate between functional non-determi-

nism and non-determinism due to underspeci�cation. The �rst term relates to the

planned non-deterministic behavior of the system, e.g. execution order of concurrently

executable processes can not be decided in advance, or the point of time of fault oc-

curance can not be predicted. The second term describes the e�ect of simpli�cation

used during modeling, e.g. at higher levels of abstraction fault modeling is usually

more abstract to facilitate simulation or uninterpreted modeling can not handle data

dependencies because of the neglected data values.

In state-transition systems uncertainty appears in form of ambiguity during the

selection of the next action to be done: In a given state under the same input conditions

multiple actions could be executed concurrently leading to di�erent successor states

and delivering di�erent output, but for some reason only one of the actions can occur.

Di�erent modeling approaches di�er in uncertainty modeling, how they describe the

selection mechanism among concurrent transitions.

In many engineering systems uncertainty modeling is solved by using stochastic pro-

cesses that is a probabilistic method. To the possible transitions probabilities are as-

signed, which express the likelihood that the given transition occurs. Selection then is

done randomly according to the probabilistic variables. The whole model is transformed

to stochastic processes, most often to Markov-chains, where transient or staedy-state

analysis can be done. The analyis results are state probabilities and transition frequen-

cies: the probability that a system is in the given state, a number the transition is

executed in unit time. This method relies on the knowledge of transition probabilities

and needs quite a fair amount of computational resources for analysis. Examples for such

approaches are Petri nets, stochastic activity networks, �nite-state machines. From the

tools that are mentioned in Chapter 1 Panda, SURF-2, and Depend solve uncertainty

modeling this way.

In this work we intentionally avoid using probabilistic models for three reasons:
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1. At high levels of abstraction it is hardly possible to extract the state or value

probabilities.

2. If probabilities can still be extracted they are so inaccurate, that the evaluation

results become useless.

3. Large probabilistic models are di�cult to handle.

In our approach uncertainty is modeled by utilizing the non-deterministic behavior

of the proposed data
ow networks. Instead of using a probabilistic approach we suggest

the following method. Functional non-determinism and the e�ects of faults are expressed

by the �ring non-determinism of data
ow nodes, i.e. concurrently executable �ring rules

describe the fault-free operation and the transition from fault-free to faulty state. The

e�ects of model simpli�cation are described by the value non-determinism of data
ow

nodes, i.e. the value of the token sent by the �ring is uncertain. For this aim we further

extend the set of tokens, node states, and �ring rules. This di�erenciation between �ring-

and value non-determinism is arbitrary and it serves merely for convenience purposes.

Actually, value non-determinism can always be converted into �ring non-determinsm.

An example of �ring non-determinism is the uninterpreted description of control

structures, e.g. an if-then-else construct. In the basic case branching is based on a data

value, that is transformed into a single token in the uninterpreted case. As a result

branching of the control sequence is done randomly, i.e. the construct is described by

two (or more) �ring rules that has the same input mapping, pre-state, and priority, but

has di�erent post-state according to the two branches.

An example of value non-determinism is the modeling of a faulty component when no

information is available whether the component delivers error-free or erroneous results.

In this case �ring rules of the node can be formulated in such a way that the node sends

uncertain, so called x tokens. This solution is similar to test invalidation at system-level

diagnostics. Here in the simplest model [PMC78] the statements of the fault-free tester

sub-system about the tested sub-system are regarded as correct, whereas the statements

of a faulty tester are regarded as uncertain. Of course other test invalidation models

[RK78, Sel85] can be adapted too.

For the handling of these �ring rules, we suggest to use list based processing in the

various model evaluation algorithms. The idea behind list based processing is that the

selection among concurrent transitions can be represented like a tree. When a selection

is done all other cases are inserted into the list a possible branches. When the selected

branch lead to a leaf, processing has to continue on the left-open branches and go on,

until all leaves are reached.

A natural question is whether the complexity of the algorithms could be descreased

by using a deterministic data
ow formalism. The usage of the non-deterministic nota-

tion in the modeling phase is reasonable because of the direct support for uncertainty

modeling and a more compact model. Non-deterministic data
ow models can be un-
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folded to deterministic ones and vice versa, similarly like �nit-state machines. The

unfolded model will contain more nodes, channels, and �ring rules than the original one.

The simpler �ring rules allow to implement less complex algorithms, but the increased

number of model elements put the e�ectivity of the evaluation into question. To decide

for which models which method is more e�ective lies outside the scope of this work.

Based on the few examined models we decided for the �rst method.

In contrast to stochastic processes list based processing is a combinatorial approach

and this way, at the highest level of abstraction diagnostic uncertainty can be introduced

and conditional error propagation can be expressed. It results that the simulation and

test generation algorithms deliver a superset of propagated fault e�ects, and in the model

all potential consequences of a fault are incorporated. What we are mainly interested is

in, are the fault propagation paths from the inputs to the otputs and withing the system.

They tell us whether an input combination is a test for a given fault, or whether a given

fault leads to system crash or not. Uncertainty in the modeling phase causes uncertainty

of the results, e.g. in some cases the above questions can not be answered uniquely.

Since this rough classi�cation of the results is su�cient at the given level of abstrac-

tion and at the solution of this type of problems, it is clear that a probabilistic approach

would not give more useful results. Of course one can still use the probabilistic approach.

In this case equal probabilities can be assigned to concurrent transitions and analysis

results have to be interpreted as follows. A probability of zero denotes non-existence,

one denotes existence. Anything else between zero and one denotes uncertainty and can

be thrown away. This leads to the same results as the suggested combinatorial approach

but for a signi�cantly higher cost.

2.2.3 Aspects of Fault-Tolerance in the Model

The overall behavior of the system (e.g. response for a given test vector, or the system-

wide e�ect of a fault) is determined by the local behavior of its components. Therefore,

aspects of fault-tolerance have to be expressed by the description of components. The

�ring rules of data
ow nodes give the designer full freedom to model error appearance,

error disappearance, permanent fault, transient fault, repair, error detection, error cor-

rection, fault hiding, fault masking, and error propagation.

To show how these aspects can be described, a single node with one input in, one

output out, and two states ok and fty is considered. State ok denotes the error-free

component and state fty the erroneous one. There are two types of tokens: ok and

fty. Token ok denotes an error-free message and token fty an erroneous one. Below

are some examples of �ring rules for di�erent cases:

error-free operation <ok;in=ok;ok;out=ok;0>

The error-free component receives and sends error-free tokens.

erroneous operation <fty;in=ok;fty;out=fty;0>
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The erroneous component sends erroneous token despite of the received error-free

token.

internal fault <ok;;fty;;0>

Due to an internal fault the component changes its state from error-free to erro-

neous.

external fault <ok;in=fty;fty;out=fty;0>

As an e�ect of an external fault, i.e. received erroneous token, the component

changes its state from error-free to erroneous.

repair <fty;in=ok;ok;out=ok;0>

As a result of repair the error disappears, the component changes its state from

erroneous to error-free. Note the external intervene into the system.

error correction <ok;in=fty;ok;out=ok;0>

The error-free component is able to detect and correct the received erroneous token

and to send an error-free one.

error masking <fty;in=fty;fty;out=ok;0>

The erroneous component receives an erroneous token and sends an error-free one,

thus the faults causing the errors are masked.

error propagation <ok;in=fty;ok;out=fty;0>

The error-free component receives an erroneous token and sends an erroneous one,

thus it propagates the error.

Internal fault and repair denotes two special cases of the supposed operation. Usually

they e�ect only the internal state of the component, but do not force it to produce

output immediately. Producing output is delayed until some external event happens

e.g. arrival of a token at the inputs. Output is produced only as a result of this external

event. Output is then a function of the two events. This operation corresponds to the

known error latency phenomenon.

To describe this kind of operation two alternatives can be considered. In the �rst

alternative the two �rings, e.g. one describing internal fault and one describing fault

repair, are always enabled, their condition part is always true; therefore, an in�nite

fault-repair loop would be possible. To prevent the development of such loops a fault-

repair scenario has to be used, that describes the execution sequence of such �rings.

This alternative is used in the above description of internal fault, but without de�ning

the fault-repair scenario.

In the second alternative the events that e�ect only the internal state of the compo-

nent and the subsequent external events are combined into single �rings. This leads to a

signi�cant increase in the number of �ring rules, but prevents in�nite fault-repair loops.

However, since external control of the internal fault and repair activities is missing, they



2.3. EVALUATION OF DATAFLOW MODELS 27

can happen fully non-deterministically. This alternative is used in the above description

of repair, while the �rst alternative is used in the examples throughout this work, in

order to decrease the number of �rings.

2.3 Evaluation of Data
ow Models

The evaluation of possible properties of data
ow networks has a very serious impact on

the usefulness of the modeling approach. The more properties can be evaluated by using

the same model the higher is the probability that the modeling approach can be used in

an integrated design environment. In Chapter 1 the need for evaluation of traditional as

well as fault related properties is listed. In this section the possible evaluation methods

are listed for the suggested data
ow formalism.

If one wants to implement such a design environment he has multiple choices how

evaluations have to be implemented. Currently the evaluation methods for data
ow

networks are either direct or indirect methods. In direct methods the properties are

evaluated directly on the data
ow model. In this method formal algorithms have to be

implemented with a lot of work and the correctness of the implemented algorithms has

to be proved.

A much more easier way is to transform the data
ow model into another model, on

which the questioned evaluation can easily be executed by using already implemented

programs. This method is preferred in each case when the feasibility of a method have

to be checked and one does not want to put very much e�ort into implementation work.

In this method the work of algorithm implementation and correctness checking falls o�.

Instead of it a transformation has to be used and the isomorphism between the two

models has to be proved. Later on, if the framework turns out to be useful, the tedious

work of adaptation can be done.

This suggestion of using model transformation for the evaluation seems to be in

contradiction with the statement in the Introduction that model transformations have

to be avoided. The di�erence is that these transformations can be automated, are

proved to be correct, and can be hided from the user. On the contrary manual model

transformations need interaction of the user, who has to be an expert of both modeling

methods and correctness of the transformation can not be checked.

In the suggested modeling approach the following evaluations can be executed for

the extended data
ow model (a + sign denotes evaluations or transformations that have

been implemented successfully at our department):

interactive simulation+ In the model construction phase interactive simulation or

a so called token game can be used to interactively check the behavior of the

system. From this point of view the data
ow model can also be called an executable

speci�cation.

The user has always full control over the execution of the data
ow network, i.e.
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from the set of potentially executable �rings he can select the one to be executed,

he can see and modify the state of nodes and the content channels.

validation Formal validation usually consists of evaluation of reachability of given

states, checking for dead-locks in the system, �nding of home state, deciding

boundedness of communication channels.

When using data
ow models validation can be based on checking the properties of

the DFN directly [Lee91, Maj94] or indirectly after a data
ow to process algebra

[BBS93] or a data
ow to Petri net [ABC+96] translation. In this method �rst the

reachability graph, the space of reachable states, and the state-transition matrix

is constructed then evaluation is done by analysis of the graph and the matrix.

temporal analysis+ Temporal analysis aims at the evaluation of temporal properties

of the system, e.g. probability of a given state, execution frequency of a given

computation, average length of a complex computation, response time of the sys-

tem.

In data
ow models temporal analysis becomes possible if average execution time is

assigned to the �ring rules of the data
ow nodes in form of probabilistic variables.

Evaluation can be done by Petri net analysis after a data
ow to Petri net trans-

formation [Cse93, CBBS94]. This evaluation usually consists of transforming the

Petri net into Markov-chains and analyzing the Markov chains. The state tran-

sition probabilities of the Markov-chain correspond to the probabilistic variables

that describe the average execution time of the �rings.

fault simulation+ Fault simulation is usually executed in order to check the behavior

of the system in presence of faults. The initial state of the system corresponds

to one of the faulty states and the response of the system to the various input

values is examined. These parameters of faulty behavior can be stored in fault

dictionaries for further use, e.g. evaluation of the test set (see this work).

Fault simulation of data
ow models is very similar to the interactive simulation;

the 
ow of tokens is evaluated from the inputs of the network to the outputs by

executing the enabled �rings of the network. It can be implemented in form of

discrete event simulation [CGPT94].

test design+ Test design usually aims at generation, evaluation, and optimization of

the test set of a system. Test generation derives the set of tests from the description

of the system; testability analysis aims at the evaluation of the quality of the test

set; �nally optimization is done in order to minimize the overhead of testing.

From the point of view of test generation data
ow models strongly resembles gate-

level models, therefore gate-level automatic test pattern generation algorithms can

be adapted. From the test set and system model the input model of integrated

diagnostics can be extracted. It makes evaluation of testability measures and
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diagnostic design (selection of tests, ordering of tests) possible (see this work and

[TCP95]).

fault e�ect analysis Failure mode and e�ect analysis (FMEA) is used to discover the

possible e�ects of a component faults, e.g. disorder in the service of the system,

failure of a given function, external faults of components. Based on the knowledge

of faults and fault e�ects it is possible to construct the fault-tree as well as the

event-tree of the system.

In data
ow modeled systems fault e�ects can be extracted from the fault dictio-

nary. Using this knowledge and by tracing down the faulty tokens during fault

simulation FMEA of the system can be executed. If the grouping of tokens corre-

sponds the criticality classes of faults and the risk of failures is known and given in

form of probability variables, criticality and risk analysis is also possible [CGPT94].

(reliability analysis) Reliability analysis aims at providing the "classical" fault tol-

erance measures of the system, like reliability, availability, mean time to failure

(MTTF), mean time to repair (MTTR), mean time between fault (MTBF). The

evaluation is based on the knowledge of the probability that a component will fail

in a given time and the probability that the repair will be �nished in a given time.

By adding fault occurrence, fault latency and detection probabilities to the nodes

in form of probability variables, the data
ow model can serve as a starting point

for a more detailed reliability analysis. This analysis is based on stochastic pro-

cesses and Markov-chains (future work). The state transition probabilities of the

Markov-chain correspond to the fault occurrence as well as to the fault detection

probabilities of the nodes.

The paradenthesis around reliability analysis denotes that in order to executed

this kind of evaluation the data
ow formalism has to be extended by allowing to

assign probabilistic variables to the �ring rules of the nodes.

2.4 An Example

In this section a simple example is given, in order to present the modeling approach. In

subsequent chapters the same example will be used to explain the evaluation methods,

e.g. the test generation algorithm. The example is an automaton that sells di�erent

type of candies (a vending-machine). In the following the methodical process of model

construction is presented. The DFG model of the automaton is shown in Figure 2.2,

while the formal description of the network is given in Appendix C. A much more

complex example is given in [Cse97] and in Chapter 6. That is the model of MEMSY

[CHG+94], an expandable fault-tolerant computer system. The model contains about

50 data
ow nodes in contrast to the 4 nodes of the candy automaton and the number

of �ring rules of a node often exceeds 200.
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Figure 2.2: DFG of the Candy Automaton

2.4.1 Basic Operation

The candy automaton is designed to take money from the client, to compute the amount

of change as a function of the selected candy and the amount of money, and to deliver

the change and the candy. The system consists of four components:

coin in/out In the �rst step of its operation the component takes the coins the client

puts in, computes the sum of their values and sends the result to the controller.

In the second step it receives the value of change from the controller and delivers

the change to the client. The component is supposed to contain a coin recognizer

and some mechanical parts to sort the coins, and an adder to compute the sum.

select It sends the identi�er of the candy, that is selected by the client, to the controller.

The component is built of a numeric keypad.

controller In the �rst step of its operation the component receives the value of money

from the coin in/out component, and the identi�er of the selected candy from

the select component. When the amount of money covers the price of the candy,

the controller commands the candies out component to deliver the candy. In the

second step, when candies out signaled that the candy is delivered, the controller

computes the amount of change and tells its value the coin in/out component. The

controller is implemented by a microcontroller.

candies out It delivers the candies according to the command of the controller. The

end of the process is reported back to the controller. This component is typically
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a mechanical equipment.

In the basic operation all of the components have a single state ok that denotes the

error-free component and is never left. In the system only error-free messages are sent,

they are denoted by ok tokens. The �ring rules describe the error-free operation of the

components.

2.4.2 Extended Operation

In extended operation, the structure of the model remains unaltered. The set of tokens is

extended according to the fault model, and the extension of the set of component states

corresponds the supposed errors of the components, while the set of �rings represents

the changes of the token set as well as the state space.

Fault model (with uncertainty)

The fault model of the candy automaton is a slightly modi�ed version of the fault model

presented in the previous section. Faults are identi�ed by the rough, and for the sake of

the compactness of the example, simpli�ed classi�cation of the results delivered by the

components. The di�erent token colors have the following meaning:

ok colored token denotes that the component delivered correct computational result.

inc token denotes that the component delivered incorrect result.

dead token is sent, if the component does not deliver results at all, e.g. due to a fatal

fault.

x token is used to express uncertainty. x token is sent if the result can be either correct

or incorrect, depending on the input, the state, and the implementation of the

component.

State space

The possible states of the components (see Table 2.2) are explained in the following:

coin in/out The erroneous state of the component is denoted by rec. It describes the

error that the component does not recognize correctly the type of the coin.

select The erroneous state of select is denoted by cont. It describes the possible result

of the contact fault of the numeric keypad.

controller The internal faults of the microcontroller leads to the erroneous state int

in which the component sends incorrect data values.
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component: error

ok
coin in/out

rec

ok
select

cont

ok
controller

int

ok

candies out ctrl

stk

Table 2.2: Set of States of the Components

candies out Candies out has two erroneous states. A control fault may cause that a

wrong type of candy will be delivered, this is denoted by state ctrl. A candy may

stuck within the mechanical part of the component. It leads to state stk where

the component can not deliver candies any more.

The size of the set of possible component faults is intentionally kept as low as it is

shown in the table, in order to preserve the simplicity of the example.

Firing rules

The extended set of �ring rules has to describe both the error-free and the erroneous

operation. Due to space limitation only the �ring rules of the candies out component

are explained here in detail. They are given separately for the three states. In state ok

the following rules describe the behavior:

r1 =< ok; to candies out = ok; ok; from candies out = ok; out = ok; 0 >

r2 =< ok; to candies out = inc; ok; from candies out = ok; out = inc; 0 >

r3 =< ok; to candies out = x; ok; from candies out = ok; out = x; 0 >

Rule r1 denotes the basic operation. Rule r2 states that, if the controller sends incor-

rect information, the wrong type of candy will be delivered to consumer. Despite the

erroneous information the component report the �nishing of delivery correctly. Accord-

ing to rule r3, the type of delivered candy will be uncertain, in case the information

that is received from the controller is uncertain. In this case too, �nishing of delivery is

reported error-free.

In state ctrl the following �ring rules describe the erroneous behavior of candies out:

r4 =< ctrl; to candies out = ok; ctrl; from candies out = ok; out = inc; 0 >

r5 =< ctrl; to candies out = inc; ctrl; from candies out = ok; out = x; 0 >

r6 =< ctrl; to candies out = x; ctrl; from candies out = ok; out = x; 0 >
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Rule r4 denotes, that although the received information is error-free, if the control part

commands the mechanic erroneously, the type of the delivered candy will be incorrect.

In contrast to that, rule r5 states, that if the received information is erroneous, the type

of candy can be either correct or false. It is a case of multiple errors within the system,

and is a source of uncertain error propagation. Rule r6 is a combination of rules r4 and

r5. Success of delivery is independent of the type of delivered candy. This is described

by the from candies out=ok output mapping of the three �rings.

In state stk the following �ring rules are necessary to describe the erroneous behavior

of the component:

r7 =< stk; to candies out = ok; stk; from candies out = dead; out = dead; 0 >

r8 =< stk; to candies out = inc; stk; from candies out = dead; out = dead; 0 >

r9 =< stk; to candies out = x; stk; from candies out = dead; out = dead; 0 >

These rules express the idea, that if the mechanical part of the component get stuck for

some reason, no candy delivery is possible anymore. Therefore, in this case the success

of delivery is not reported either.

2.5 Contribution

In this chapter I presented a formal method to solve fault modeling as an integrated part

of the architectural design of computing systems. The method is based on an asynchron

non-deterministic data
ow notation and its advantage is that is can be used even in

early phases of the design. The main steps of the method correspond to the design 
ow

of HW-SW codesign, which is one of the most promising new design method.

� I gave an approach to describe the faults and the fault propagation of the func-

tional units of the system by means of a data
ow formalism. The data
ow nodes

that desribe the fault-free behaviour of the components have to be extended by

the description of the erroneous behaviour: 1) the state space has to be extended

by the erroneous states 2) the token set has to be extended by tokens that denote

the qualitatively grouped erroneous data items 3) the set of �ring rules has to be

extended by �ring rules that handle the erroneous states and data items. This way

I am able to model the basic fault-related e�ects of the components: fault appear-

ance, repair, fault propagation, fault detection, fault signaling, error correction,

fault hiding.

� I gave a solution for the problem of representing uncertainty. Firing non-deter-

minism of the data
ow networks describes the random execution order concurrent

ecents of the system. Value non-determinism describes erroneous data items that

can not be grouped uniquely. For this reason one has to extend the set of tokens

by tokens that describe uncertain data items and the set of �ring rules by �ring
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rules that handle these additional tokes. Therefore, I am able to describe the

uncertainty caused by the lack of information in early design phases.



Chapter 3

Model Re�nement

It is well accepted now that the development of complex systems is most adequately

carried out by going through a sequence of development phases, that are often referred

to as levels of abstraction. In these successive phases a system or system component

is described in more and more detail until a su�ciently detailed description or even an

e�cient implementation of the system is obtained. The individual steps of such a process

can be captured by appropriate notions of re�nement. In a re�nement step, parts or

aspects of a system description are made more complete or more detailed.

In order to check whether the re�nement step brought any inconsistency into the

model, the notion of re�nement has to be formalized. Although the stepwise re�nement

of an inconsistent speci�cation will still lead to an inconsistent implementation, without

formalized rules the re�nement of a consistent speci�cation could lead to inconsistent

implementation. In [Bro95, Jon89a] some approaches of model re�nement are discussed

while [dBdRR90] gives a broad overview of the topic.

Model re�nement is a well known concept in the formal design of computing sys-

tems. Unfortunately its importance, that is emphasized in the literature, has not been

discovered yet by many developers implementing CAD tools. Therefore, a lot of these

tools nowadays support hierarchical modeling, but do not give support for consistency

checking between the di�erent models at di�erent levels of abstrction. In this chapter

the re�nement rules of data
ow models are elaborated. By this novel step our data
ow

approach becomes usable in hierarchical modeling.

3.1 Approaches of Model Re�nement

In most cases of modeling distributed systems, re�nement is formulated for interactive

system components, i.e. active components communicating with each other by sending

messages via interconnecting channels. In classi�cation of re�nement usually two views

of a system can be distinguished:

black-box view In the black-box view of a system component, only its interaction

with its environment is described. The black-box view consists of a syntactic
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interface (input and output channels, and message types) and a semantic interface

(relationship between input and output messages).

glass-box view In the glass-box view details of the internal system structure are de-

scribed. This includes a description of the internal state space of the system and/or

the internal distribution of the system into subsystems. The subsystems may again

be described in di�erent levels of detail.

Clearly our data
ow description de�nes a glass-box view of the system. The aspects

of glass-box view include the internal representation of the components in one of two

forms: state transition system or distributed system. In the former case the component

is described by the internal states and �ring rules as given in De�nition 2.1. In the

latter case the node is de�ned by a data
ow sub-network. If the internal representation

is given by a state transition system, the easiest way to create the description is to

use state machines that have a well elaborated formal background [CL89]. In [Cse96]

the mapping between DFN and non-deterministic �nite-state transducers (NDFST) is

shown.

The three basic types of re�nement of systems with glass-box view are the following:

communication history re�nement Communication history re�nement changes the

syntactic interface of the component, that is the number of input and output

channels as well as their message types.

state space re�nement The state-oriented description uses a state transition func-

tion/relation to describe the behavior of the component. State space re�nement

changes the set of states of the component.

distribution re�nement Distribution re�nement re�nes the component into a sub-

network, i.e. instead of the state transition relation the internal representation

of the component is given by a sub-network. The state of the component is then

composed from the states of the sub-components.

As it can be seen from the above, re�nement is usually done for components, since

re�nement of a component is always a re�nement of the system, due to the fact that the

composition operators (parallel, sequential, feed-back composition) are monotonic with

respect to re�nement. The proof of this compositionality must always be done for the

actual modeling language.

3.2 Data
ow Re�nement

In this section we formalize the re�nement rules for data
ow networks. This is an

adaptation of the previously mentioned three basic re�nement types of glass-box systems.

Compositionality of the used data
ow formalism is proved in [Jon89b]. It results, that

re�nement of a node is always a re�nement of the network.
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When switching from one abstraction level to another, the designer can change the

data
ow model in many ways. We refer to such a change as a re�nement, if and only if

the structure of the network remains unaltered 1, and only the behavior of the model is

modi�ed. In the data
ow notation it will mean the modi�cation of the data
ow nodes.

Changing the behavior of a data
ow node will always result in changing the �ring

rules of the nodes. These changes can originate from:

1. changing the token set Mn,

2. changing the set of states Sn,

3. substituting the node with a DF sub-network.

The �rst two cases are covered by domain re�nement, while the third case is covered

by structure re�nement. The following subsections present the rules of re�nement for

these two cases. In general, a re�nement of a data
ow network is the composition, i.e.

consecutive application, of these two cases.

3.2.1 Domain Re�nement

In domain re�nement (DR) either the token set or the state space of a data
ow node is

changed. In domain re�nement the set of �ring rules is adapted to the changes of the

token set and to the changes of the state space as well.

Suppose that n = (In; On; Sn; s
0
n; Rn;Mn) and n̂ = (În; Ôn; Ŝn; ŝ

0
n; R̂n; M̂n) are the

data
ow nodes of two di�erent DFNs. Moreover, a transformation Rd is given, that:

Rd : n 7! n̂

De�nition 3.1 The transformation Rd is a domain re�nement for node n, i� M̂n is a

re�nement of Mn; În = In; Ôn = On; Ŝn is a re�nement of Sn; ŝ
0
n 2 R(s

0
n); and 8r̂

i
n 2

Rd(rn) holds that ŝ
i
pre 2 Rd(spre), ŝ

i
post 2 Rd(spost), ^im

i
2 Rd(im), ^omi 2 Rd(om), and

�̂i = �, where r̂in = (ŝipre; ^im
i
; ŝipost; ^omi; �̂) and rn = (spre; im; spost; om; �).

Note that for better readability the notation rn = (spre; im; spost; om; �) is used

instead of rn = (sn;Xin; s
0
n;Xout; �). Using the input and outputs mappings im 2 IM

and om 2 OM instead of the sequences corresponds to our assumption that only one

token is received/sent at a time on a channel. IM = �niMn and OM = �noMn, where

ni = kInk, no = kOnk. (� denotes the Cartesian product and kAk the cardinality of

A.) Since M̂n is a re�nement of Mn and the number of input and output channels is

unchanged, ^IMn is also a re�nement of IMn. The same is true for ^OMn and OMn.

In the following two examples are given for domain re�nement. The �rst shows token

set re�nement, while the second presents state set re�nement. The data
ow models of

1Only some very restricted changes are allowed in the structure of the DFG, they will be discussed

later in this chapter.
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the examples do not have relevant semantic content, they are thought solely to present

the syntactical e�ect of the transformation.

Example 1: domain re�nement

Let n = (fing; foutg; fon; offg; on; fr1; r2g; fa; bg) and n̂ = (fing; foutg; fon; offg; on;

fr̂1; r̂2; r̂3; r̂4g; faa; ab; ba; bbg) two data
ow nodes and R a transformation, that trans-

forms n into n̂. The �ring rules are the following:

r1 =< on; in = a; off; out = a; 0 >

r2 =< off; in = b; on; out = b; 0 >

r̂1 =< on; in = aa; off; out = aa; 0 >

r̂2 =< on; in = ab; off; out = ab; 0 >

r̂3 =< off; in = ba; on; out = ba; 0 >

r̂4 =< off; in = bb; on; out = bb; 0 >

The transformationR of the example is a domain re�nement, based on De�nition 3.1.

If, for example, r̂4 is modi�ed to r̂4 =< off; in = ab; on; out = bb; 0 >, R is not a

domain re�nement any more, since r̂4 2 R(r2) but (ab) =2 R((b)).

Example 2: domain re�nement

Let n = (fing; foutg; fgood; ftyg; good; fr1; r2; r3g; fa; bg) and n̂ = (fing; foutg; fgood;

cold; hotg; good; fr̂1; r̂2; r̂3; r̂4; r̂5g; fa; bg) two data
ow nodes and R a transformation,

that transforms n into n̂. The �ring rules are the following:

r1 =< good; in = a; good; out = a; 0 >

r2 =< good; in = b; fty; out = b; 0 >

r3 =< fty; in = a; fty; out = c; 0 >

r̂1 =< good; in = a; good; out = a; 0 >

r̂2 =< good; in = b; cold; out = b; 0 >

r̂3 =< good; in = b; hot; out = b; 0 >

r̂4 =< cold; in = a; cold; out = c; 0 >

r̂5 =< hot; in = a; hot; out = c; 0 >

The transformation R of the example is a domain re�nement, based on De�ni-

tion 3.1. If, for example, n̂ is changed to n̂ = (fing; foutg; fgood; cold; hotg; hot; fr̂1; r̂2;

r̂3; r̂4; r̂5g), R is not a domain re�nement any more, since hot =2 R(good).

3.2.2 Structure Re�nement

In structure re�nement (SR) a single data
ow node is split (re�ned) into a sub-network

of many nodes, while the token set and the state space remains unaltered. Changes of

the network structure does not e�ect the other nodes as well as the original channels,

only the "inner structure" of the re�ned node is changed. To de�ne structure re�nement

the de�nition of �ring sequence is necessary:
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De�nition 3.2 The �ring sequence fs of a data
ow network DFN=(N,C,S) denotes

the consecutive execution of �ring rules of the nodes of the network. It leads from one

state of the network to another, and is denoted by fs = s
ri
; sx : : : sy

rj
; s0, where

s; s0 2 S are the starting and the �nal states, sx : : : sy 2 S are intermediate states, and

ri : : : rj 2 R =
S
n2N Rn are elements of the �ring sequence.

Note, that between s and s0 usually many �ring sequences are possible. If s0 is not

given, the �ring sequence is called in�nite, otherwise it is called �nite. The set of �ring

sequences of the network is denoted by FSDFN . The input mapping im of a �ring

sequence is a Cartesian product im 2 IM = �c2IMc. It denotes the tokens that are

removed by the �ring sequence from the input channels of the network. Accordingly

om 2 OM = �c2OMc denotes the tokens that are produced on the output channels of

the network. As in case of �rings, �ring sequences too move at most one token from/to

a single channel.

Suppose that n = (In; On; Sn; s
0
n; Rn;Mn) is a data
ow node, and DFN = (N;C; S)

is a data
ow network. Moreover a transformation Rs is given, as:

Rs : n 7! DFN

De�nition 3.3 The transformation Rs is a structure re�nement for node n, i� Mn =

Mm, 8m 2 N ; (In [ On) � C such that In = I and On = O; 8si 2 Sn, R(si) =

Ŝi � �m2NSm such that Ŝk \ Ŝl = ; 8k; l; and 8ri 2 Rn, R(ri) = F̂ Si � FSDFN such

that F̂ Sk \ F̂ Sl = ; 8k; l and 8fsi 2 F̂ Si s(fsi) 2 R(spre(ri)), s
0(fsi) 2 R(spost(ri)),

im(ri) = im(fsi), and om(ri) = om(fsi).

The de�nition states that in structure re�nement a data
ow node is transformed

into a data
ow network. The transformation transforms the input and output channels

of the node into input and output channels of the network. The set of channels of the

networks contains additionally the internal channels. The token set of the nodes of the

DFN is equal to that of the initial node. By de�nition, the token set of the internal

channels is also the same. States of the original node are transformed to the global

in

n

out

R

int out

n2n1

in

Figure 3.1: Example of Structure Re�nement
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states of the nodes of the network (Cartesian product of the node states) in such a way,

that to one state of the node a subset of global states is assigned, but to one global

state only one state of the original node is assigned. The �ring rules of the node are

transformed to �ring sequences of the network in such a way, that the tokens removed

by the �ring sequences from the input channels of the network and the tokens removed

by the �rings from input channels of the node are the same, while the pre- and post

states of the �ring sequences correspond to the pre- and post states of the �ring rules.

In the following an examples is given for structure re�nement. Again the data
ow

model is without any relevant semantic content, it is thought solely to present the

syntactical e�ect of the transformation.

Example: structure re�nement (see Figure 3.1)

Let n = (fing; foutg; fgood; ftyg; good; frn1; rn2g; fa; bg) be a node of a data
ow net-

work, DFN = (fn1; n2g; fin; out; intg; f(g; g;X); (g; f;X); (f; g;X); (f; f;X )g) a data-


ow network, and R a transformation, that transforms n into DFN . In the state of

the network g stands for good, f for fty, and X denotes the state of the channels. The

�ring rules of the nodes are the following:

rn1 =< good; in = a; good; out = a; 0 >

rn2 =< good; in = b; fty; out = b; 0 >

rn11 =< good; in = a; good; int = a; 0 >

rn12 =< good; in = a; fty; int = b; 0 >

rn21 =< good; int = a; good; out = a; 0 >

rn22 =< good; int = b; good; out = b; 0 >

The transformation R of the example is a structure re�nement, based on De�ni-

tion 3.3. If, for example, rn22 is changed to rn22 =< good; int = b; good; out = a; 0 >,

R is not a structure re�nement any more, since the �ring sequence of DFN that corre-

sponds rn2 would map a 7! out instead of b 7! out.

3.3 Consistency Checking After Re�nement

Clearly, the user is not supposed to well dominate the formalism of data
ow notation,

and even not the rules of re�nement. Therefore, an automated process has to be pro-

vided, that takes as input the two models of di�erent abstraction levels and checks

whether the changes indicate a re�nement of the system. This problem is decidable in

contrast to the more general problem of equality of two such models, that is shown to

be undecidable [Mur89].

For consistency checking we exploit the correspondence between non-deterministic

�nite-state transducers (NDFST) and data
ow nodes. For NDFST's there are mature

and validated algorithms to check compatibility, is a well known and already solved
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problem. Informally our consistency checking algorithm consists of the following steps:

comparison of the structures of the networks, transformation of the nodes of the net-

works into NDFSTs, and bisimulation of the corresponding NDFSTs. This algorithm of

checking is in accordance with our statement in Chapter 2, that problems that do not

lay in the mainstream of testability analysis should temporarily be solved by existing,

well functioning tools.

A non-deterministic �nite-state transducer, also called Mealy-automaton, is a �nite-

state machine, which has a �nite state space and upon receiving elements of an input

alphabet changes its state and sends elements of an output alphabet. The mappings

between input and output as well as between input and successor states are described by

a relation instead of a function of the deterministic �nite-state machine. The di�erence

between �nite-state automaton and �nite-state transducer is that the automaton does

not produce output.

In general the re�nement of a data
ow node is a re�nement of the corresponding

�nite-state transducer. Re�nement rules are de�ned for �nite-state transducers too, but

the re�nement rules of data
ow networks that are used during modeling of technical

systems, consist only a small subset of them. Therefore, it is meaningful to deal with

data
ow re�nement separately. Moreover, composition of �nite-state transducers yields

a �nite-state transducer, and it is unable to express the asynchronousness of operation

and in�nity of communication channels.

3.3.1 From DFN to NDFST

A non-deterministic �nite-state transducer can describe a data
ow node that corre-

sponds to De�nition 2.1 or a data
ow sub-network that is a result of the re�nement of

a data
ow node. The transformation of data
ow nodes and sub-networks to NDFSTs

is presented in this section.

In the following de�nition relations over sets are rather presented as functions over

the power sets of the set. For example relation R from X to Y is denoted by: R : X 7!

Y �, where Y � is the power set of Y .

De�nition 3.4 A non-deterministic �nite-state transducer NDFST is a tuple (�;�;

S; s0; �; !) where:

� - input alphabet

� - output alphabet

S - set of states

s0 - initial states, s0 2 S

� - state transition function, � : S � � 7! S�

! - output function, ! : S � � 7! ��

The de�nition of strings over the token set is necessary since the order in which the

tokens are mapped to the inputs of the node is important, e.g. a on channel 0 and b on
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channel 1 is not the same as b on channel 0 and a on channel 1.

De�nition 3.5 A string (or word) of length n over a set A is a sequence of symbols

a1; a2; : : : ; an, where n 2 IN and 8i = 1; 2; : : : ; n; ai 2 A. The set of such strings is

denoted by An.

De�nition 3.6 The length of a string is denoted by jAnj = n.

The set of all strings that can be constructed from a given set A is denoted by A?.

Of course, like the set of natural numbers, A? is in�nite.

De�nition 3.7 Let Am and Bn be two sets of strings. Bn is a re�nement of Am, i�

m = n, and B is a re�nement of A.

De�nition 3.8 Let A and B be two sets and R a relation for which 8ai 2 A R(ai) � B

such that R(ai) \ R(aj) = ; 8i; j. R is then a re�nement relation, and B is called a

re�nement of A.

The transformation from data
ow nodes to NDFSTs in fact is a simple substitution

in which the input and output mappings of the node are described by the input and

output alphabet while the set of �ring rules is substituted by the state transition function

and the output function.

De�nition 3.9 The DF node to NDFST transformation consists of the following sub-

stitutions:

� =M i
n, i = kInk

� =Mo
n, o = kOnk

S = Sn, s0 = s0n
� = f: : : ; ((ri(s); ri(Xin)); ri(s

0)); : : :g;8ri 2 Rn

! = f: : : ; ((ri(s); ri(Xin)); ri(Xout)); : : :g;8ri 2 Rn

In case of structure re�nement the transformation of a data
ow sub-network is nec-

essary. In general a data
ow sub-network, that is composed from nodes that correspond

to De�nition 2.1 works on �nite or in�nite token sequences instead of single tokens. In

contrast, sub-networks arising during structure re�nement of a node are special DFNs

that work on single tokens, according to De�nition 3.1. Note, that the following trans-

formation is restricted to these special sub-networks, and can not be used for general

DFNs.

De�nition 3.10 The DFN to NDFST transformation consists of the following substi-

tutions:
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� =M i
n, i = kIk and n 2 N

� =Mo
n, o = kOk and n 2 N

S = SDFN , s0 = s0DFN

� = f: : : ; ((s(fs); im(fs)); s0(fs)); : : :g;8fs 2 FS of DFN

! = f: : : ; ((s(fs); im(fs)); om(fs)); : : :g;8fs 2 FS of DFN

3.3.2 Bisimulation of NDFSTs

Similarly to the �ring sequence of data
ow networks, the multiple step computation,

also called action sequence, has to be de�ned for NDFSTs. In the used terminology it

is denoted by the extended output function.

De�nition 3.11 The extended output function �! of a given NDFST is a function

�! : S � �? 7! �?.

The notion of bisimulation is based on the extended output function. The underlying

idea is, that the two NDFSTs are able to "simulate" each others behavior. Usually it

is thought to check the equivalent behavior of di�erent NDFSTs that work on the same

input and output alphabet, and their states can be proved to be equivalent by relabeling

the elements of the state set.

In our implementation bisimulation is thought to prove the equivalence of an original

and a re�ned NDFST. Therefore the de�nition is slightly di�erent, and the de�nition of

extended output function re�nement is necessary.

De�nition 3.12 Let �!1 : S1 � �?
1 7! �?1 and �!2 : S2 � �?

2 7! �?2 be two extended output

functions. �!2 is a re�nement of �!1 i� S2 is a re�nement of S1, �2 is a re�nement of

�1, and �2 is a re�nement of �1.

Informally, bisimulation between two NDFSTs exists, i� the state space of NDFST2

is a re�nement ofNDFST1 and the possible multi-step behavior from each corresponding

state pair s1 and s2 are "equivalent", i.e. the produced outputs satis�es the rules of

re�nement. Note that this notion of bisimulation agrees with the de�nitions of glass-

box modeling.

De�nition 3.13 A relation R between NDFST1 and NDFST2 is called a bisimulation,

i� �!2 is a re�nement of �!1.

Finally, the following theorem has to be proven in order to be able to use bisimulation

for checking the re�nement of data
ow networks:

Theorem 3.1 Let NDFST1 and NDFST2 be two non-deterministic �nite-state trans-

ducers that are the results of using De�nition 3.9 on the data
ow nodes n1 and n2, or

the results of using De�nition 3.10 on the data
ow node n1 and the data
ow sub-network

DFN . A bisimulation R between NDFST1 and NDFST2 exists i� n2 is a re�nement

of n1 or DFN is a re�nement of n.
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Proof The proof of the theorem is done in two steps. First the necessary part is proved,

then the su�cient part is proved by using indirection.

1. Suppose, that a bisimulationR exists betweenNDFST1 andNDFST2. According

to De�nition 3.13 �!2 is a re�nement of �!1. Therefore, by applying De�nition 3.12

S2 is a re�nement of S1, �2 is a re�nement of �1, and �2 is a re�nement of �1.

Now the thread of the proof has to be split according to whether NDFST2 is

transformed from a data
ow node n2 or from a data
ow sub-network DFN .

In the �rst case, applying De�nition 3.9 yields, that M i2
2 is a re�nement of M i1

1 ,

Mo2
2 is a re�nement of Mo1

1 , and S2 is a re�nement of S1. According to De�ni-

tion 3.7 i1 = i2, o1 = o2, and M2 is a re�nement of M1. Finally De�nition 3.1

states, that this is a domain re�nement and n2 is a re�nement of n1.

In the second case, the result of applying De�nition 3.10 is, thatM i is a re�nement

of M i1
1 , Mo is a re�nement of Mo1

1 , and S is a re�nement of S1. Again, according

to De�nition 3.7 i = i1, o = o1, and M is a re�nement of M1, in special case

M = M1. Using De�nition 3.3 results, that DFN is a structure re�nement of n1

in the special case. In the general case De�nition 3.1 can be applied subsequently.

It states, that a domain re�nement preceeded the structure re�nement.

2. In proving the su�cient part of the theorem, the steps of the proof are di�erent,

depending on whether NDFST2 is transformed from the node n2 or from the

sub-network DFN .

In the �rst case suppose, that n2 is not a re�nement of n1, but R a bisimulation

exists between NDFST2 and NDFST1. According to De�nition 3.1, M2 is not a

re�nement of M1, and/or i2 6= i1, and/or o2 6= o1, and/or S2 is not a re�nement of

S1. Using De�nition 3.7 results, thatM
i2
2 is not a re�nement ofM i1

1 andMo2
2 is not

a re�nement of Mo1
1 . Therefore, by applying De�nition 3.9, �2 is not a re�nement

of �1, and/or �2 is not a re�nement of �1, and/or S2 is not a re�nement of S1.

Accordingly, De�nition 3.12 states, that �!2 can not be a re�nement of �!1. Finally

it leads to the fact, De�nition 3.13, that no bisimulation exists between NDFST1

and NDFST2, that contradicts to our assumption, that R is a bisimulation.

In the second case suppose, that DFN is not a re�nement of n1, but R a bisimu-

lation exists between NDFST2 and NDFST1. It means, De�nition 3.3 states it,

that M 6= M1, and/or i 6= i1, and/or o 6= o1, and/or S is not a re�nement of S1.

Using De�nition 3.7 results, that M i is not a re�nement of M i1
1 and/or Mo is not

a re�nement of Mo1
1 . Applying De�nition 3.10 we get, that �2 is not a re�nement

of �1 and/or �2 is not a re�nement of �1, and/or S2 is not a re�nement of S1.

De�nition 3.12 states, that in this case �!2 is not a re�nement of �!1. Applying Def-

inition 3.13 results, that no bisimulation exists between NDFST1 and NDFST2.

It is in contradiction with the statement, that R is a bisimulation.

2



3.3. CONSISTENCY CHECKING AFTER REFINEMENT 45

1:
2: begin

if (Di� Struct()) then return FAILURE

begin

3:
4:

5:
6:
7:
8:

9:
10:
11:

for (all n1 2 N1)

�nd n2 or SDFN2 to n1
transform n1 to NDFST1

12: end

end
return SUCCESS

if not (Bisimulation()) then return FAILURE

transform n2 or SDFN2 to NDFST2

Ref Check()

Figure 3.2: Algorithm of Re�nement Checking

3.3.3 Checking Algorithm

For re�nement checking two di�erent algorithms can be used. The �rst is a pairing algo-

rithm, which is based on the application of De�nitions 3.1, 3.3. It iteratively partitions

the sets (token set, set of states, set of �rings) within the two nodes under investigation.

This way it tries to �nd consistent re�nements of the set pairs, i.e. the re�nement of

token set, set of states, and set of �ring rules has to be consistent. This algorithm

is NP-complete. The other, more elegant algorithm has already been mentioned in

the beginning of this section: it tries to �nd a bisimulation between the corresponding

nodes. Unfortunately this algorithm is NP-complete too. In the following this checking

algorithm is presented.

Since there are plenty of tools for �nding bisimulation (Caesar-Aldebaran [FGK+96],

Concurrency Factory [CGL+94], JACK [BFG96], Concurrency Workbench [CPS89], Mo-

bility Workbench [VM94], TAV, EPSILON [Wan90]), we do not need to provide an al-

gorithm for it. Therefore, the checking algorithm is restricted to the skeleton, presented

in Figure 3.2. Note, that the algorithm is not as simple as it looks like; certain steps

hide hard mathematical problems, that are NP-complete, but solution algorithms are

well known for these problems, e.g. checking the isomorphism of graphs in Step 3, or

�nding bisimulation in Step 9. The steps of the algorithm are the following:

Step 3 The structure of the network has to be checked by using De�nition 3.3. If the

structure is unchanged or the changes represent the re�nement of a single node

to a data
ow sub-network, the algorithm can be carried on. Otherwise it has to

be terminated by FAILURE, since DFN2 is not a re�nement of DFN1. Function

Di� Struct works similarly to a general function that checks isomorphism of graphs.

Step 4 Now the re�nement of the network can be checked by checking the re�nement

of the individual nodes. Therefore, all nodes of DFN1 have to be checked.

Step 5 The pair of the node n1 has to be identi�ed. It is either a node n2 or a sub-



46 CHAPTER 3. MODEL REFINEMENT

network SDFN2 of DFN2. In subsequent steps re�nement between the elements

of the pair has to be checked.

Step 7-8 Checking is based on bisimulation. Therefore, the elements of the pair are

transformed to non-deterministic �nite-state transducers. n1 is transformed to

NDFST1, while n2 or SDFN2 is transformed to NDFST2.

Step 9 A bisimulation R has to be found between NDFST1 and NDFST2. It can be

done by one of the before-mentioned tools or algorithms. If bisimulation exists,

according to De�nition 3.13, the changes of n1 represent re�nement. Otherwise

the algorithm has to be terminated by FAILURE.

Step 11 If all nodes satis�ed Step 9 the checking of DFN1 is SUCCESSFUL.

Since the presented algorithm, that is able to check consistency between two DFNs

without a priori knowledge is very complex, it is necessary to make thougths about a

less complkex method. The designer usually knows what and how he had re�ned, and

what he wanted to reach with it. If he tells about it the design framework in form of

trace scenarios, the whole process of consistency checking becomes less complex. The

trace scenario should contain each re�nement step in detail: what kind of re�nement

has been done, what were the changes of the token set, the state space, and the �rings.

(I.e. sets before and after re�nement and the related elements of the sets.)

This way re�nement can be checked step by step. In each step pairing of the sets

can be neglected, since it is described in the trace scenario. Bisimulation also becomes

super
uous, since correctness of between the corresponding sets can be simply decided by

applying the de�nitions of re�nement. This way the complexity of re�nement checking

becomes linear that makes handling of great models much more e�cient.

3.4 Application of Re�nement in Modeling

The rules of data
ow re�nement have been de�ned in previous sections. In this section

it is shown how these rules can be used in the proposed modeling approach. Examples

are given how the basic types of re�nement can describe the changes of the model, how

switches between levels of modeling can be expressed by means of re�nement, and how

uncertainty modeling can in
uence the rules of re�nement.

3.4.1 Model Changes and Re�nement

Data
ow re�nement in general is a mixture of the two basic re�nement types. In the

extended data
ow model these basic types correspond to the following changes:

� Domain re�nement describes the changes of the state space and that of the token

set. Therefore, domain re�nement is applied to a node in one of these two cases:
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{ If the token set was extended, DR is used in order to incorporate the faults of

a di�erent node. In this case the node under re�nement has to be prepared

to propagate the new, faulty tokens.

{ If the behavior of the component has to be described in more detail, or if

further faults of the component are considered and therefore further erroneous

states are necessary.

Domain re�nement covers the case when both new token types and new states has

to be introduced, e.g. the states of a component are changed, but new token types

must be used corresponding to the new states.

� Structure re�nement is usually applied if the behavior of a component becomes

too complex to be able to describe it in terms of �ring rules, or if the component

is built from �ner components of a lower level, or if the fault of a component arises

as a correlated fault of two lower level components.

3.4.2 Multi-Level Modeling and Re�nement

The proposed modeling approach is intended to be used in di�erent phases of design,

i.e. at di�erent levels of abstraction. In current CAD design environments the main

levels of abstraction are usually de�ned as: uninterpreted modeling, interpreted modeling,

and allocated modeling. The latter one can be de�ned as the modeling after HW-SW

separation, resource allocation and operator binding. Although the e�ectivity of our

modeling approach in allocated modeling is questionable, we do not suggest to use it for

such purposes, the e�ects of resource allocation has to be back-annotated into higher

level models (see Figure 1.1).

Re�nement within a given level (hierarchical modeling) is already described in pre-

vious sections. In the following the relationship between re�nement and switching of

modeling levels (multi-level modeling) is shown.

From uninterpreted modeling to interpreted modeling

In uninterpreted modeling the functionality of a component is described by the token

transformation relation of the data
ow node. Tokens do not have value, i.e. they are

uninterpreted, only their quantity in a channel is considered. The relation is de�ned

over the number of tokens, instead of over the values of tokens.

The extension of the model is done by coloring the tokens according to some user

de�ned criteria. The data
ow model becomes interpreted, but modeling is still unin-

terpreted. The single token type is substituted by a few types of colored tokens. The

changes can be described by the rules of re�nement.

In interpreted modeling the functionality of a component is described by the token

transformation relation, that works with data values of the tokens. However the number

of consumed and processed tokens has to satisfy the token transformation relation of
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uninterpreted modeling. Therefore, switching from uninterpreted to interpreted model-

ing corresponds to a domain re�nement, i.e. transition from uniformly colored tokens

to tokens that have coloring that corresponds to the data value.

In the extended operation the tokens, that have a data value are colored according to

the same user de�ned criteria, as in the case of uninterpreted modeling. A single "valued"

token is substituted by a few colored tokens with the same value, and this substitution

corresponds to the rules of re�nement. The token transformation relation works as

follows: the token color transformation corresponds to the token color transformation

relation of uninterpreted modeling, while the value of the token is changed according to

the basic, interpreted functioning.

From interpreted modeling to allocated modeling

The main problem in the transition from interpreted to allocated modeling concerns the

mapping of functional units to the same resource. The process of resource allocation

has not been fully automated yet, however it would be very important from the point

of view of CAD systems. Some heuristic algorithms are already known, but manual

interaction is necessary in all cases. A very interesting approach is given in [DJ97]. It

can deal with fault tolerance too, but can only be used for synthesis from the already

validated design.

Although resource allocation lies outside the focus of this work, some of the problems

can not be overcome: when allocating two independent units to the same resource,

independence is lost. Errors of the units that were earlier independent will behave as

correlated errors: i.e. a fault of the resource will cause errors in both functional units.

In the step of resource allocation, the principle of top-down design is violated, since

information must be propagated to higher level models. On the one hand, due to HW

reuse, already implemented components are introduced into the model from bottom-

up. This could be handled by multi-level modeling in form of model abstraction. The

rules of abstraction are the inverse of that of model re�nement. On the other hand

during allocation transformations are used that modify the structure of the system. It

is even more characteristic in case of fault-tolerant systems, where fault tolerance is

usually achieved by additional structural mechanisms. This second e�ect of resource

allocation can not be handled by model re�nement/abstraction, from the point of view

of re�nement/abstraction not allowed model changes have to be done.

However resource allocation and its e�ects can be presented in the data
ow model

the following way: nodes representing the functional units that are allocated to the same

resource has to be drawn together into one node. The state space of the drawn together

node is the Cartesian-product of the state space of the nodes. The user has to select

which erroneous states of the nodes are result of a fault in the resource, and these states

will describe the correlated errors. The token set of the drawn together node is the union

of token sets of the nodes. Input channels of the nodes are mapped as input channels of
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the drawn together node, while output channels are mapped as output channels.

Firings of the drawn together node are constructed from the �rings of the nodes.

If a �ring does not describe an error-free to erroneous, an erroneous to erroneous, or

an erroneous to error free state transition or if the above transitions does not e�ect

erroneous states that describe correlated errors, it is simply extended to contain the full

state description. It will then only move tokens among the input and output channels of

its original node, and will change only the part in the Cartesian-product that comes from

the state of the original node. If the previous condition does not hold the �ring describes

a correlated error. In this case input-output mapping is the same as in the previous case,

but the state space is changed in such a way that other parts of the Cartesian-product

are also changed, i.e. these other parts represent the state of the other nodes e�ected

by the correlated error.

These changes of the model e�ect only the structure of the data
ow network, and

leave its behavior una�ected, but the changes of the structure do not correspond the

rules of re�nement. Therefore it is not a re�nement, but the consistency (i.e. state

consistency) of the models is still maintained.

Although the proposed framework does not aim model evaluation at this low level

of abstraction, i.e. at the level after HW-SW separation and resource allocation, the

consistency of the model can be further assured and back-annotation of implementation

dependent information is possible.

3.4.3 Uncertainty Modeling and Re�nement

If uncertainty is present in the token set or in the state space of the nodes, then it has

to be taken into account during re�nement. In our case this uncertainty is described by

elements of the set, that are composed by drawing together two or more other elements,

e.g. x in the example. In this case the re�nement rules of sets should be changed slightly.

In normal re�nement a set A is partitioned in some way. The re�ned set B is also

partitioned. The re�nement relation assigns to each partition of B a single partition of

A. If uncertainty is present in the modeling, one or more partitions of A and B will

contain elements representing uncertainty. Now the re�nement relation assigns to each

partition of B only one "certain" and one or more "uncertain" partitions of A. It means,

that during re�nement uncertain elements become either certain, i.e. they will belong

to the partition of one of the elements from which they were drawn together, or they

remain uncertain, i.e. they will belong to the re�ned "uncertain" partition.

When the de�nition of set re�nement is modi�ed accoriding this suggestions, the

rules of re�nement can also be used without modi�cations for models which contain

uncertainty. The system designer can further rely on the automated process of re�ne-

ment checking, while he can fully exploit the modeling power of the data
ow modeling

approach.
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select

mechanics

controller

hw logic

coin in/out

changecoin in

from candies out

to coin in/out

from coin in/out

select candy

from select

to mechanics

out

to candies out

candies out

Figure 3.3: DFG of the Re�ned Candy Automaton

3.5 Re�nement of the Example

In our practical example, the candies out component of the candy automaton is re�ned

into two parts: a hard-wired logic part and a mechanical part. The logic is responsible

for controlling the mechanics, and the mechanics delivers the candies. The re�ned DFG

is shown in Figure 3.3, while the complete formal notation is presented in Appendix C.

3.5.1 Re�nement of Candies out

As a result of re�nement two additional nodes appear in the data
ow network in place of

the candies out node. A node called hwl represents the hard-wired logic of candies out,

while a node called mechanics describes the mechanical part of candies out.

They both inherited the token set of candies out. The input of hwl is the same

as that of candies out, while the outputs of mechanics corresponds to the outputs of

candies out. An additional channel called to mechanics is established between hwl and

mechanics. The states of the nodes (Table 3.1) are explained in the following:

hwl The control fault ctrl in the hard-wired logic may cause that a wrong command

is delivered to the select unit of the mechanical delivery subsystem.

mechanics A candy may stuck in the mechanics. It leads to state stk where the
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component: error

ok
hwl

ctrl

ok
mechanics

stk

Table 3.1: Set of States of the Components After Re�nement

component can not deliver candies any more.

The fault model of the system is the same as before re�nement (refer to Chapter 2).

Therefore, the token set of the nodes is unchanged.

3.5.2 Re�nement checking

In this subsection the re�nement checking of the candy automaton is given in order

to present the re�nement checking algorithm. It will be shown that the changes of

candies out really denote structure re�nement. First by applying the de�nitions then

by using the presented algorithm. The three basic steps of the algorithm (structure

checking, transformation to NDFST, bisimulation) are discussed separately.

Statement 3.1 The changes of the candy automaton example represent the structure

re�nement of the candies out component and therefore they correspond to the rules of

re�nement.

Proof Let the lower index n denote the node candies out, while hwl denotes the node

hwl, mech denotes the node mechanics, and N denotes the sub-network composed of

hwl and mechanics. The proof can be done by using De�nition 3.3. It will be shown,

that the transformation ful�lls the four requirements of structure re�nement:

� For the token sets is holds that Mn = fok; inc; dead; xg = Mhwl = fok; inc; dead;

xg =Mmech = fok; inc; dead; xg.

� The channels are sets for which (In [ On) = fto candies out; from candies out;

outg � CN = fto candies out; from candies out; to mechanics; outg such that

In = fto candies outg = IN = fto candies outg and On = ffrom candies out;

outg = ON = ffrom candies out; outg.

� The states are such that Shwl � Smech = f(ok; ok); (ok; stk); (ctrl; ok); (ctrl; stk)g

and R(s0) = f(ok; ok)g, R(s1) = f(ctrl; ok)g, R(s2) = f(ok; stk); (ctrl; stk)g

where si 2 Sn for i = 0; 1; 2.

� For the �rings and �ring sequences holds that FSN = f((ok; ok); r1hwl; (ok; ok);

r1mech; (ok; ok)), ((ok; stk); r1hwl; (ok; stk); r4mech; (ok; stk)), ((ok; ok); r2hwl;
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(ok; ok); r2mech; (ok; ok)), ((ok; stk); r2hwl; (ok; stk); r5mech; (ok; stk)), ((ok; ok);

r3hwl; (ok; ok); r3mech; (ok; ok)), ((ok; stk); r3hwl; (ok; stk); r6mech; (ok; stk)),

((ctrl; ok); r4hwl; (ctrl; ok); r2mech; (ctrl; ok)), ((ctrl; stk); r4hwl; (ctrl; stk); r5mech;

(ctrl; stk)), ((ctrl; ok); r5hwl; (ctrl; ok); r3mech; (ctrl; ok)), ((ctrl; stk); r5hwl; (ctrl;

stk); r6mech; (ctrl; stk)), ((ctrl; ok); r6hwl; (ctrl; ok); r3mech; (ctrl; ok)), ((ctrl; stk);

r6hwl; (ctrl; stk); r6mech; (ctrl; stk))g.

Moreover, R(r1) = f((ok; ok); r1hwl; (ok; ok); r1mech; (ok; ok))g; R(r2) = f((ok;

ok); r2hwl; (ok; ok); r2mech; (ok; ok))g, R(r3) = f((ok; ok); r3hwl; (ok; ok); r3mech;

(ok; ok))g, R(r4) = f((ctrl; ok); r4hwl; (ctrl; ok); r2mech; (ctrl; ok))g, R(r5) =

f((ctrl; ok); r5hwl; (ctrl; ok); r3mech; (ctrl; ok))g, R(r6) = f((ctrl; ok); r6hwl; (ctrl;

ok); r3mech; (ctrl; ok))g, R(r7) = f((ok; stk); r1hwl; (ok; stk); r4mech; (ok; stk));

((ctrl; stk); r4hwl; (ctrl; stk); r5mech; (ctrl; stk))g; R(r8) = f((ok; stk); r2hwl; (ok;

stk); r5mech; (ok; stk)); ((ctrl; stk); r5hwl; (ctrl; stk); r6mech; (ctrl; stk))g, R(r9) =

f((ok; stk); r3hwl; (ok; stk); r6mech; (ok; stk)); ((ctrl; stk); r6hwl; (ctrl; stk); r6mech;

(ctrl; stk))g where ri 2 Rn for i = 1; 2; 3; 4; 5; 6; 7; 8; 9.

Finally, s(fs0) = (ok; ok) 2 R(spre(r1candies out) = f(ok; ok)g, s0(fs0) = (ok; ok) 2

R(spost(r1candies out) = f(ok; ok)g, im(fs0) = (ok) = im(r1candies out) = (ok), and

om(fs0) = (ok; ok) = om(r1candies out) = (ok; ok). (The same can be checked by

the user 8fsi where i 2 f1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11g.)

Therefore, the example is the structure re�nement of the component candies out. 2

Structure checking

Checking the data
ow network structure is done by comparing the two DFGs. In this

case the easiest way to do it is to compare Figure 2.2 and Figure 3.3. Since the set of

nodes is increased during re�nement, structure re�nement of some nodes is suspected.

Instead of candies out two new components hwl and mechanics appeared. The con-

nection of the channels to candies out, from candies out, and out to the nodes hwl and

mechanics corresponds to their connection to candies out. Connection of the other chan-

nels remained unchanged. The additional channel to mechanics is connected between

the two new nodes. Therefore, the changes of the DFG indicate structure re�nement of

candies out and correspond to the rules of re�nement.

Transformation to NDFST

According to De�nition 3.9 the candies out node is transformed to the following trans-

ducer:

NDFST1:

� = f;; ok; inc; dead; xg

� = f(;; ;); (;; ok); (;; inc); (;; dead); (;; x); (ok; ;); (ok; ok); (ok; inc); (ok; dead);
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(ok; x); (inc; ;); (inc; ok); (inc; inc); (inc; dead); (inc; x); (dead; ;); (dead; ok);

(dead; inc); (dead; dead); (dead; ok); (x; ;); (x; ok); (x; inc); (x; dead); (x; x)g

S = fok; ctrl; stkg

s0 = ok

� = f((ok; ok); ok); ((ok; inc); ok); ((ok; x); ok); ((ctrl; ok); ctrl); ((ctrl; inc); ctrl);

((ctrl; x); ctrl); ((stk; ok); stk); ((stk; inc); stk); ((stk; x); stk)g

! = f((ok; ok); (ok; ok)); ((ok; inc); (ok; inc)); ((ok; x); (ok; x)); ((ctrl; ok); (ok; inc));

((ctrl; inc); (ok; x)); ((ctrl; x); (ok; x)); ((stk; ok); (dead; dead));

((stk; inc); (dead; dead)); ((stk; x); (dead; dead))g

According to De�nition 3.10 the candies out subnetwork, consisting the nodes hwl

and mechanics, is transformed to the following transducer:

NDFST2:

� = f;; ok; inc; dead; xg

� = f(;; ;); (;; ok); (;; inc); (;; dead); (;; x); (ok; ;); (ok; ok); (ok; inc); (ok; dead);

(ok; x); (inc; ;); (inc; ok); (inc; inc); (inc; dead); (inc; x); (dead; ;); (dead; ok);

(dead; inc); (dead; dead); (dead; ok); (x; ;); (x; ok); (x; inc); (x; dead); (x; x)g

S = f(ok; ok;X); (ok; stk;X); (ctrl; ok;X); (ctrl; stk;X)g

s0 = (ok; ok;X)

� = f(((ok; ok); ok); (ok; ok)); (((ok; ok); inc); (ok; ok)); (((ok; ok); x); (ok; ok));

(((ok; stk); ok); (ok; stk)); (((ok; stk); inc); (ok; stk)); (((ok; stk); x); (ok; stk));

(((ctrl; ok); ok); (ctrl; ok)); (((ctrl; ok); inc); (ctrl; ok)); (((ctrl; ok); x); (ctrl; ok));

(((ctrl; stk); ok); (ctrl; stk)); (((ctrl; stk); inc); (ctrl; stk));

(((ctrl; stk); x); (ctrl; stk))g

! = f(((ok; ok); ok); (ok; ok)); (((ok; ok); inc); (ok; inc)); (((ok; ok); x); (ok; x));

(((ok; stk); ok); (dead; dead)); (((ok; stk); inc); (dead; dead));

(((ok; stk); x); (dead; dead)); (((ctrl; ok); ok); (ok; inc)); (((ctrl; ok); inc); (ok; x));

(((ctrl; ok); x); (ok; x)); (((ctrl; stk); ok); (dead; dead));

(((ctrl; stk); inc); (dead; dead)); (((ctrl; stk); x); (dead; dead))g

Bisimulation

Since many of the mentioned tools are based on reachability analysis, here we use this

method to show that bisimulation exists between the two NDFSTs. In reachability

analysis the reachability graph of the NDFST is built. The NDFST is started from

di�erent states and its state transitions and states are registered. Any of its states can

be selected as a starting state and each state will be selected once during the analysis.

The reachability graph is a graph, whose nodes denote the states of the NDFST, while

the arcs represent the state transitions. Nodes are labeled with the identi�er of the state,

and arcs are labeled with the input taken by the NDFST and the output produced by

the NDFST. In case of NDFSTs the reachability graph is identical to the state-transition
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Figure 3.4: Reachability Graph of NDFST1

diagram, but note that the notion of reachability is more general (it is used for Petri

nets, DFNs, bisimulation, etc.).

The two reachability graphs are given in Figure 3.4 and Figure 3.5. It is obvious

that the two lower nodes in Figure 3.5 can be drawn together into a single node without

loss of functionality. After drawing together these nodes, the two reachability graphs

are identical, i.e. they have equivalent nodes, and identically labeled arcs. Therefore

bisimulation exists between the two NDFSTs.

3.6 Contribution

In this chapter I elaborated the notion of model re�nement for the proposed data
ow

formalism. If the de�ned re�nement rules are not violated during model re�nement then

the consistency of the model can be kept. Advantage of the solution is that is is based

on formal de�nitions, and the provided checking algorithm can easily be automated.

� Based on the known idea of re�nement, I de�ned data
ow model re�nement in

form of two mathematical transformations. One of them is domain re�nement

Rd, that describes the possible partitioning of the state space and the set of data

items. It is done by re�ning the set of states and tokens of the data
ow nodes and

by extending the set of �ring rules in order to handle new states and tokens. The

other transformation is structure re�nement Rs, that describe the splitting of a

functional unit into smaller parts. It is done by substituting a data
ow node with

a data
ow subnetwork.

� I traced back the problem of data
ow model consistency checking to the known
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Figure 3.5: Reachability Graph of NDFST2

and already solved problem of �nding bisimulation of �nite-state automata by

means of a data
ow to �nite-state automata transformation. I proved that if the

two automata NDFST1 and NDFST2 are a result of applying the transformation

to either two data
ow nodes n1 and n2 or to a data
ow node n1 and a data
ow

DFN , than bisimulation R between NDFST1 and NDFST2 exists if and only if

n2 or DFN respectively is a re�nement of n1.

� I gave an approach for checking the consistency of the data
ow networks before

and after re�nement: 1) if no a priori information is present about the re�nement,

then I use a general algorithm that is based on �nding bisimulation between the

corresponding �nite-state automata 2) if in form of a log �le a priori information

exists about the steps of re�nement, then consistency checking can simply be done

by applying the de�nitions of re�nement 3) if the design framework does not allow

model changes di�erent from the one allowed by the de�nitions of re�nement,

then the rules of re�nement are automatically met. All three methods suit for

automation.
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Chapter 4

Test Generation

Consider some examples from the life-cycle of a fault-tolerant system: in the production

phase a system is not declared to be ready for operation, as long as it contains some

faulty components; during operation availability could not be realized without on-line

recon�guration of the system by closing out the faulty components; in maintenance

the faulty components have to be removed and repaired. In all of the above cases the

common process of identifying the faulty components is done by testing.

Usually, testing is based on the execution of the tests of the system. A test in general

is described by some input pattern of the system, called test vector. During testing the

test vector is applied to the inputs of system, and the result of processing, the so called

test result, is delivered on the observable outputs of the system. In order to �nd out

malfunctioning of the system the result of test is compared to the response of the fault-

free system. Tests of the system are generated by automated tools, the process of test

generation itself is called automatic test pattern generation (ATPG).

4.1 Test Generation Approaches

Test generation for digital systems dates back to the early 60's [RBS67]. Since then,

mainly due to the increasing complexity of the addressed systems, a large number of

di�erent approaches has been elaborated. Currently test generation approaches can be

divided into two groups.

4.1.1 Gate-level Test Generation

Traditionally test design has been carried out at the gate-level [ABF90, Fuj86, BF76]. At

this level e�cient methods and tools are available for test generation for combinational

circuits, e.g. the well known D-algorithm [RBS67] or PODEM [Goe81]. By utilizing

the method of the iterative array model [ABF90], these algorithms can be used in test

generation for sequential circuits too. Nevertheless, test generation for sequential circuits

remains a challenge [Mar78]. On the other hand, complexity problems forced to replace
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the sea of interconnected gates by more tractable models in case of large systems.

Replacing gate-level subnetworks by corresponding higher level components has

brought in the test generation problem the concept of hierarchy [CP89, Kri87, MH88,

Arm92]. It helps to handle complexity in the modeling, but model evaluation does not

bene�t from it, since the underlying description of the higher level components is still

based on gate-level constructs. Further increasing complexity leads to expansion of the

search space, that makes evaluation impossible. Additionally, gate-level tests of VLSI

components are useless, due to their costly and ine�cient implementation.

4.1.2 High-level Test Generation

Using high-level primitives, instead of gate-level structures, has a lot of advantages from

the point of view of raising the e�ciency of the test generation process: compared to

gate-level test generation fewer con
icts are produced; the implication procedure is more

powerful; the number of backtrackings is smaller; and sensible paths can be propagated

over a complex primitive by a single operation. Test generation methodologies di�erent

from those based on knowledge about the gate-level structure of a circuit are called

high-level test generation [BMH89, BH85]. The most widely used levels of high-level

descriptions are (with typical components):

� register-transfer level (multiplexer, counter, shift register)

� architectural level (CPU, memory, controller)

� multi-level (gate-level, register transfer-level, and architectural level components

mixed).

The increasing complexity of high-level models made it necessary to introduce the

notion of hierarchy in high-level test generation leading to approaches such as: hierar-

chical test generation with high-level primitives, hierarchical multi-level test generation.

From the point of view of the applied description method, test generation approaches

can be divided roughly into two categories:

structural In the structural approach, the objective for test generation is a system that

is described by a network of components.

functional In the functional approach only the behavior of the system is given in terms

of inputs, outputs, and internal states.

This distinction is somewhat blurred sometimes, especially when higher description

levels are compared to that of gate-level, since high-level models usually are made of a

set of interconnected components, i.e. structural description, but the components itself

are de�ned by some input-output mapping, i.e. functional description. Unfortunately,

there is no universal high-level test generation algorithm, the used method is highly

dependent on the modeling language.
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4.2 Data
ow Test Generation

Our method is a good example for the above problem: data
ow networks combine a

structural description of the system with a glass-box description of the components. In

[BCS91] an algorithm is presented for test pattern generation for data
ow models, but

it is limited to deterministic models. Moreover, there are necessary restrictions on the

structure of the network: only data
ow nodes with single output can be used, in order to

avoid the problem of reconvergent fan-out. Therefore, this algorithm is very ine�cient

for non-deterministic models.

According to what we stated about the evaluation methods in Chapter 2, there

are two possible alternatives. Either the data
ow networks are transformed to other

models, or an algorithm must be developed. Although existing high-level algorithms are

useful, really e�ective methods exist mainly at gate-level test generation. Unfortunately

data
ow networks can not be transformed to logic-gate level models.

In [TSR93] it is shown that any ATPG network can be described as the object

oriented data
ow representation of a constraint network. After this transformation the

ever growing set of constraint based test generation tools could be used. The problem

with this method is threefold:

1. The semantics of our data
ow notation is unidirectional and not bidirectional, by

de�nition DFNs work in forward direction. It would make backward propagation

impossible. This problem can be solved by neglecting the statement about FIFOs,

more precisely during backward propagation the FIFOs work as FILOs, and the

�ring rules are executed in opposite direction. It is similar to the case of logic

gates, that can not be driven from the outputs towards the inputs, but logic-gate

level ATPG algorithms use backward propagation notwithstanding.

2. The used DF formalism is non-deterministic, while the supposed bidirectional ob-

ject oriented formalism is deterministic. Likewise all constraint based test gener-

ation methods can deal only with deterministic models. The non-determinstic to

deterministic conversion of DFNs is rejected in Chapter 2 because of its complexity.

3. Constraint based test generation algorithms are used mainly for logic-gate level

test generation. The used heuristics suit probably to the general properties of

logic-gate level models and not to DF models.

Therefore this approach is not useful for us. Instead of this we suggest the following

approach for the solution of the test generation problem: �nd as much similarities to

powerful gate-level structural methods as possible and try to adapt these techniques to

the requirements of data
ow models by exploiting the similarities and considering the

di�erences.

When comparing the data
ow modeling approach to gate-level modeling methods,

many similarities can be found. The most important ones are summarized in Table 4.1,
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problem logic gate-level data
ow

component faults stuck-at fault model erroneous messages

structural description schematic circuit diagram data
ow graph

functional description truth/state table �ring rules (transfer relation)

loops/component with states iterative arrays (
ip-
op) iterative arrays (node)

component with states self-initialization self-initialization

Table 4.1: Similarities between gate-level and data
ow ATPG

while below the detailed description is given:

1. One limitation of the suggested fault model, that the faults do not alter the struc-

ture of the network. Therefore; errors of the component are modeled as erroneous

messages on the outputs of the node. (See more details in Chapter 2.) It is similar

to the fault modeling that is used at gate-level, where the faults of a gate are

described by using the stuck-at fault assumption at their outputs.

2. The data
ow approach uses the data
ow graph (a directed graph) to describe the

structure of the system, while the structure of the logical circuit is described by

the schematic circuit diagram, which in turn is a graph too.

3. The nodes of the data
ow graph describe the behavior of the corresponding com-

ponent by a transfer relation. It is similar to the gate-level approach, that is

considered as a structural approach and in which behavior of the logic gates is

described by truth or state transition tables.

In fact both logic gates and functional units are described by forward propagation.

(Just as a logic gate does not work in reverse direction by driving its outputs,

functional units can not receive messages on their output and produce messages

on their inputs.) However during test generation backward propagation is possible

by assigning values to the inputs in the knowledge of expected outputs, e.g. if a

logical 1 is expected at the output of a 2 input and gate, and one of its input is 1,

then from the truth table the necessary value for the other input can be derived.

4. Similarly to gate-level models, the data
ow model can contain feedback loops

and components with states. It leads to the problem that the generated tests

are composed from multiple steps and re-entering of the same component during

testing becomes necessary. Just like in the case of sequential logical circuits the

problem can be solved by cutting the loops and constructing the iterative array

model1. (More about using the iterative array model can be found in the next

section).

1Note that there are more e�ective methods for solving this problem than the iterative array model

[ABF90].
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5. The functional units have states; therefore, testing of a system has to be started

from a prede�ned initial system state. It resembles the initialization of the 
ip-


ops of sequential circuits. (In practical data
ow models examined till yet there

was no need for the search of a self-initialization sequence.)

This correspondence provides the practical background when adapting the wide

palette of test generation methods (PODEM, D-algorithm, FAN, composite justi�ca-

tion [Szi79b, Szi79a], etc.) that were elaborated for sequential logical circuits under the

stuck-at fault assumption. As a representative example of the possible methods, we

selected the well known PODEM (Path Oriented DEcision Making) and D-algorithms

[ABF90, Goe81]. In this work only PODEM is dealt with in detail, for the description

of the D-algorithm please refer to [CPS95]. Selection was done in the hope, that by

benchmarks PODEM was shown to be more e�cient than the D-algorithm for logical

circuits with error-correction-and-translation functions and at least as e�ective for other

circuits.

4.3 PODEM for Data
ow Models

In order to generate a test for a given fault the problem of test generation is recur-

sively divided into the subproblems of: implication and checking; line justi�cation; fault

propagation. Implication and checking aims at the reduction of the problem space, line

justi�cation is responsible for setting the primary inputs (PIs) according to a given line

and fault propagation tries to propagate the state of a line to the primary outputs (POs).

The PODEM algorithm is characterized by a direct search process: it directly manip-

ulates the PIs and tries to propagate the error to the POs. In each step of the algorithm

checking and implication is done. To keep track of the still open propagation problems

a set is maintained during the algorithm: the D-frontier contains the components from

the outputs of which the error has to be propagated towards the POs. The advantage of

PODEM over other test pattern generation algorithms is that due to the direct search:

� backward propagation is not necessary.

� the J-frontier can be eliminated,

4.3.1 PODEM for Sequential Circuits

A very useful property comes from the fully asynchronous nature of the data
ow net-

works and from the FIFO like behavior of the channels. Tokens can be consumed by a

node only in the order as they were produced by the preceding node. It causes that single

�rings of cyclic execution of a node do not get blurred, they can easily be recognized and

separated. Therefore, for the primary aim of test generation, i.e. that of providing the

test vector, no special considerations have to be done for handling sequential behavior.



62 CHAPTER 4. TEST GENERATION

N

B

CA

NiN1N0

A0

B0 B1 B2 Bi

C2 AiC1

Bi+1

Ci+1

cell 0 cell 1 cell i

A1

Figure 4.1: Iterative array model of a data
ow network

However, if the user is interested in the token propagation path during testing,

a method has to be used, that can provide the necessary information, in our case the

unfolded data
ow network of the test. It can either be done by simulating the processing

of the test vector, or the test generation algorithm can be modi�ed properly, e.g. by

using the iterative array model, that can be implemented very simply.

In this case the loops of the data
ow model are handled similarly to sequential cir-

cuits of the logic gates: the data
ow network that consists loops of channels can is

replaced by a "unfolded" data
ow network that does not contain loops. An example

is shown in Figure 4.1. The two networks are equivalent in the following sense. Each

cell of the array is identical to the one given in the upper part of the �gure. If an

input sequence a(0); a(1); : : : ; a(k) is applied to N in its initial state s(0), and it pro-

duces the output sequences b(1); b(2); : : : ; b(k) and c(1); c(2); : : : ; c(k) and state sequence

s(0); s(1); : : : ; s(k), then the iterative array will generate the outputs b(i+1) and c(i+1)

from cell i, in response to the inputs a(i) and b(i) to cell i.

4.3.2 Adaptation of PODEM

Because of the di�erences between data
ow and gate-level models, the following prob-

lems have to be solved during adaptation:

� Due to the multi-valued fault model the number of possible combinations of the

test vector and of the error pairs is larger in the data
ow model. The algorithm

has to cope with this increased complexity.

� According to the non-deterministic behavior of a component, multiple �rings are

enabled at a time in a data
ow node. It increases the complexity of the imply

procedure and the number of backtrackings. To get correct result a list based

fault propagation is necessary (more details see later).
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� Firings describe the predecessor and successor states of a computation. Checking

has to ensure, that the consecutive states of the node in the iterative array model

correspond to these states.

� Data
ow nodes can produce output without mapping all of the inputs; therefore,

the D-frontier contains nodes to the inputs of which errors are propagated instead

of containing nodes whose outputs are reached during error propagation.

� Checking has to ensure that the constraints imposed by the global testing require-

ments are ful�lled, e.g. safe testing, when the faults propagated during testing of

a component must not cause an error of other components.

List based fault propagation

In the adapted PODEM algorithm lists of token pairs are processed instead of simple

token pairs. This is necessary in order to get correct results of test generation. Please

note that it di�ers from list based fault simulation where a given test vector is simulated

for all possible faults of the system.

Similarly to composit justi�cation [Szi79b, Szi79a] a token pair denotes a pair of

tokens, one of which describes the error free operation of the system, while the other

describes the response of the erroneous system. It the tokens are di�erent the token pair

is called error pair. I this case the erroneous behavior of the system can be distinguished

from the error free one. Thus the actual aim of test generation is to �nd an input vector,

such that if it is applied to the inputs of the system an error pair appears on the output(s)

of the system.

Consider a simple data
ow node with two �rings that are concurrently enabled, but

produce di�erent outputs; one of them propagates the input error pair, while the other

does not. In the operation the two �rings are executed randomly, thus the node does

not propagate the error pair in each case. Therefore, a single test vector results multiple

possible test results. Accordingly an input mapping is only then a valid test vector, if all

of the multiple output mappings contain some error pairs. Since this problem can not

be decided locally, i.e. decision can only be done when the tokens reached the outputs,

the problem of list based processing has to be solved. In the above case the input of the

node is a single error pair, while its output is a list of the two possible outputs.

The above exact method delivers the test set of the system. In case if non-deter-

minism in the model is due to the lacking implementation details, e.g. modeling of a

HW without knowledge of the corresponding SW, this method can not be used, since

in many cases test can not found. In such cases an approximate method can be used in

which error propagation is based on error pairs and not on list of error pairs. Of course

the computed test is only a potential test, and in a post-evaluation phase the feasibility

of the test has to be checked.

As an example consider a system bus of a computer where the CPU executes a write
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1: Podem()
2: begin

if (Error at PO()) then return SUCCESS
if (Test not possible()) then return FAILURE

k=Objective()
j=Backtrace(k)
for (v=all possible token values)
begin

Imply(j,v)
if (Podem()=SUCCESS) then return SUCCESS

end

return FAILURE
end

3:
4:

5:
6:
7:
8:

9:
10:
11:

12:
13:

Figure 4.2: The PODEM algorithm

operation, but the destination address is not known. In this case the bus arbiter selects

randomly one peripheral device and the computed test may pass if during operation a

di�erent peripheral device is addressed. Therefore, in the post evaluation-phase a SW

has to be written that makes it sure that under all circumstances the given peripheral

device is selected by the bus arbiter.

During evaluation of the complex example of this work, i.e. the testability analysis

of the MEMSY system this approximate method and post-processing was used.

4.3.3 Description of the Algorithm

Test generation is started with initialization of the channels, when the value ND (not

de�ned) is assigned to each channel; with resetting the nodes to their initial state; and

with injecting faults into the faulty node. After that the Podem() procedure is called.

The Podem() procedure

The outline of the procedure is given in Figure 4.2. In each step when Podem() is

executed some checking is made, a PI is selected, implication is done, and Podem() is

called recursively again to check the results of the implication step. The activities of the

procedure are:

Step 3: Check the stop criterion: each time Podem() is called it has to be checked,

whether the goal of test generation is reached, i.e. a list, containing error pairs is

propagated to a PO.

Step 4: Check whether test generation is still possible: if the goal of test generation is

not reached, it has to be ensured, that test generation can be carried on meaning-

fully. Usually, this is done by checking that:
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� the target fault can not be activated, since a di�erent token value has been

propagated to the output of the erroneous component,

� no error propagation can be done, since the D-frontier is empty,

� conditions that are imposed by the implementation of the algorithm are true

(e.g. the maximum number of elements in the iterative array model is reached,

the maximum number of tokens in a channel is reached, etc.)

If one of the above checking gives positive results, Podem() has to be stopped and

a backtracking has to be done.

Step 5: Select an objective for error propagation: procedure Objective() is called in

order to select an objective, i.e. a channel of the data
ow network. The goal of

subsequent steps is then to propagate a list containing error pairs to the selected

channel.

Step 6: Select a PI: in PODEM objectives are reached by setting the PIs, therefore a

PI has to be selected, that is in connection with the given channel. Backtrace() is

called to trace back from the channel to one of the PIs of the data
ow network.

Backtracing is based exclusively on the structure of the network, the function of

the components is not considered.

Step 7: Due to the multi-valued fault model subsequent steps have to be repeated for

all possible token value.

Step 9: Imply value v on PI j: a token with value v is inserted into PI j, and implication

is done by propagating the token toward the POs by executing all enabled �rings

of the data
ow network.

Step 10: Call Podem() to carry on test generation: when all possible implications are

done, Podem() is called again to select a new objective and to try to generate a

test by justifying this additional objective.

Step 12: Test generation is not successful: if test generation failed for all possible token

values backtracking has to be done.

The Objective() procedure

The aim of PODEM is reached by dividing the test generation problem into subgoals

of error propagation to a selected channel. Procedure Objective() (see Figure 4.3) is

responsible to select the next subgoal for PODEM. The activities of the procedure are:

Step 3,4: Select a node: a node has to be selected that has still unassigned inputs, i.e.

inputs with value ND. First the inputs of the erroneous node are checked. If all of

its inputs are assigned, then a node from the D-frontier is taken.
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Objective() /* fault is n=f */
begin
if (any input of n is ND) then N=n

select one input m of N
return m

end

1:
2:
3:
4:

5:
6:
7:

else select a node N from D-frontier

Figure 4.3: The Objective() Procedure

Backtrace(k)
begin
while (k is an output)

begin
select an input j of node n /*k is an output of n */
k=j

end
return k

end

1:
2:
3:

4:
5:
6:

7:
8:
9:

Figure 4.4: The Backtrace() Procedure

Step 5: Select a channel: one still unconnected input channel of the selected node is

chosen randomly.

Step 6: Return the identi�er of the selected channel.

The Backtrace() procedure

Based on the structure of the network and on the behavior of single nodes, the Back-

trace() procedure (see Figure 4.4) is responsible for �nding the PIs, with adjustment of

which an error pair can be propagated to the channel that is selected by Objective().

The activities of the procedure are:

Step 3: Proceed as long as the channel is not a primary input.

Step 5{6: An input j has to be assigned to the output k of the component n. The

decision of which input to be assigned to the output is based on local testability

measures, i.e. the input is selected from which an error pair is propagated most

probably. This is de�nitely a weak point of PODEM, since in PODEM value

assignment is done only during forward propagation. Therefore, the more distant

is n from the objective node, the less related will be the decision to actual channel

contents.

Step 8: Return the identi�er of the PI that was found. The path traced back by the

procedure denotes the implication path from the PI to the given objective.
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The e�ectivity of PODEM can signi�cantly be increased by the appropriate selec-

tion of local testability measures, upon which the decision in Step 5 of Backtrace() is

done. Unfortunately the testability measures used for logic-gate level circuits can not be

generalized for DFNs, since they were characteristic for the properties of logic-gate cir-

cuits. In the simplest case a random decision can be used that, although works without

problems, is nothing else than a combinatorial experimenting of all possible cases. The

suggested method should work more e�ective, at least during evaluation of our industrial

size models the execution times were withing the range of acceptability. To elaborate

the most e�ective measures lies outside the scope of this work.

4.3.4 Possible Simpli�cation

In sequential logic the test will place test sequences on the inputs of the system instead

of single test values. The iterative array model can used to help to generate each value

of the sequence similarly to the case of combinational logic. Previously we showed that

this method could be used for data
ow models too.

However; if the user is not interested in the state of the di�erent nodes of the network

in each execution step of the test, but only in their initial and �nal states, the usage of

the iterative array model can be neglected. This is due to the fact, that the data
ow

nodes are connected by channels with depth, and to the functioning they do not need

the value on the inputs continuously. It means that the same instances of channels and

nodes can be used in subsequent steps of test generation.

In this case the algorithm will be the same as presented in Figure 4.2 only the data

structures will become di�erent. The functioning of the algorithm for both with and

without the iterative array model is explained in the next section.

4.4 Complexity Issues

In [Fuj86] the original algorithm [Goe81], is proved to be NP-complete, since in worst

case it tends to exhaustive search. Since the adapted algorithm has identical outline

(control structure) to that of the original one, PODEM for the data
ow networks is

expected to be the at least the same complexity. The number of choices during the

search is additionally increased due to the multi-valued token model and uncertainty

modeling. Similarly to the original algorithm, our algorithm will always �nd a solution

for the problem, as long as a solution is given. This is again due to the exhaustive search

that is done in worst case. Finally if the algorithm delivers a result, it is a solution for

the problem, since the algorithm is based on a provably correct implication.
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4.5 Test Generation for the Example

To enlighten the previously described algorithm the example of the candy automaton is

considered. The steps of test generation are presented in detail for the erroneous state

int of the controller. The test generation procedure is shown in Figure 4.5. Vertical

partitioning of the �gure corresponds to the actual steps of test generation:

Step 0: Initialization of the network. State of the controller is set to ok/int, while the

state of coin in/out, select, and candies out is set to ok. The value ND is assigned

to each channel and the D-frontier is emptied. The PODEM algorithm can be

started.

Step 1: First call of Podem(). Error propagation can be done, since no error pair

reached the outputs (error at po() returns 0) and no value con
ict is detected

at the outputs of the controller (test not possible() returns 0). The inputs of

controller, from coin in/out and from select, are still unassigned. Objective()

selects the channel from coin in/out randomly to be the objective of line justi�ca-

tion. Backtrace() �nds the PI coin in to be in connection with from coin in/out.

Implication is started by assigning the value ok to coin in. After executing �ring

r1 of coin in/out the value ok is propagated to channel from coin in/out. Error

propagation terminates at this step, since there are no more enabled �rings. The

controller is put into the D-frontier.

Step 2: Second call of Podem(). The POs are still unassigned (error at po() returns

0) and no value con
ict is detected at the outputs of the controller (procedure

test not possible() returns 0), thus error propagation can be carried on. The con-

troller still has an unassigned input channel. Objective() selects from select to

be the objective of line justi�cation. Note that the controller was not selected by

Objective() because it is in the D-frontier. Procedure Backtrace() selects the PI

select candy that is in connection with the channel from select. Implication

is started by setting the value of select candy to ok. After executing �ring r1

of select the value ok is assigned to from select. Now �rings r1 and r21 of the

controller can �re. After execution of the �rings, the error pair ok/inc appears

on channel to candies out. Firings r1 and r2 of candies out deliver a token ok

on from candies out and an error pair ok/inc on out. The second �ring of

the controller (�rings r17 and r37) puts an error pair ok/inc into the channel

to coin in/out. The controller already �red once, therefore the second �ring

belongs to the second block of the iterative array model. After execution of the

�rings r5 and r6 of coin in/out, the error pair ok/inc is propagated to change. It

is the second �ring of coin in/out, thus is is presented in block 1 of the iterative

array model. Error propagation is terminated for lack of enabled �rings. The

D-frontier becomes empty, since both the inputs and the outputs of the controller

are assigned.
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Figure 4.5: PODEM for the Candy Automaton
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Step 3: The last call of Podem(). The error pair ok/inc reached the outputs change

and out; therefore, error at po() returns 1 and Podem() terminates the recursion

with SUCCESS.

The generated test pattern maps ok on both coin in and select candy. The

data
ow model of the test can be seen in Step 2 of Figure 4.5. Note that the test

is free of loops. If the test is executed in an error-free system ok appears on both out

and change. If the components coin, candy, and select are error-free and the controller

is in state inc, the execution of the test results inc on both outputs of the system.

If we do not use the iterative array model, the loop between controller and

candies out will not be cut. Therefore; the state of controller in the �rst block

will be overwritten by its state in the second block, and it can not be read out.

4.6 Contribution

In this chapter I gave an algorithm for test generation for the suggested data
ow models

by adapting logic gate-level automatic test pattern generation algorithms. These become

able to handle the multi-valued fault model and the uncertainty that characterize the

non-deterministic data
ow formalism.

� I gave a method to adapt the e�cient logic gate-level test generation algorithms by

solving the problem of the multi-valued fault model and uncertainties of the model.

The multi-valued token set is handled similarly then multi-valued logic in case of

logic gate-level algorithms: during token propagation the tokens that describe the

fault{free and the erroneous system are propagated together in form of a value

pair. To cope with uncertainty I use list based propagation: all value pairs that

can possibly sent by a data
ow node are kept together in a list. Therefore, the

list contains the tree of possible execution paths of the data
ow network. Test

generation is successful when on all leaves of the tree an error pair reaches the

output.

� I carried out the adaptation for a given logic gate-level test generation algorithm

and showed its functioning by experiments. The selected algorithm is the well

known PODEM that was shown to be e�cient for circuits containing a large num-

ber of fault- detecting and correcting circuits. Another advantage of PODEM is

that it is relatively simple. It is based on a direct search: it tries to propagate faults

from the fault site towards the outputs by manipulating the inputs of the system,

therefore backpropagation can be neglected. The adaptation gave an experimental

but fully functioning algorithm for test generation of the data
ow model.



Chapter 5

Testability Analysis

The aim of testability analysis was always to provide quantitative measures about the

di�culty of testing a given system. By identifying the problem places, i.e. places with

poor testability measures, testability analysis done in early phases of the design is the

basic issue of design for testability.

In the era of LSI digital circuits testability was considered to estimate the di�culty

of generating a test for a given fault of a circuit element, e.g. stuck-at-1 fault at the

input of a NAND gate [AM82, Gol79]. The algorithms assumed that testability is an

inherent property of the circuit based solely upon the circuit structure. This assumption

allowed to estimate the circuit's testability before test generation was started. There-

fore the basic requirement of testability analysis was that it should be computationally

simpler than test generation. Figure 5.1 shows the process of this type of testability

analysis. Testability in this context is de�ned by the testability measures, the six most

important of which are: combinational zero controllability (CC0), combinational one

controllability (CC1), combinational observability (CO), sequential zero controllability

(SC0), sequential one controllability (SC1), sequential observability (SO).

As digital circuits and systems became more complex, test generation was shifted

from gate-level to higher levels. Testability analysis followed this trend, but in case of

circuit
description

measure
testability

testability
results

Figure 5.1: Testability Analysis Based on System Structure
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test
set

testability
results

fault
simulator

circuit
description

Figure 5.2: Testability Analysis Based on the Test Set of the System

high-level models that contain components with complex behavior, testability can not

be measured solely based upon the structure without taking behavior into consideration

[HG87, dPMCKS89, SS91c, SS94]. Therefore, testability analysis can not be executed

without the knowledge of the test set, that is generated by a highly sophisticated ATPG.

The typical process of this type of testability analysis is shown in Figure 5.2. In this

context testability is de�ned as: ". . . a design characteristic which allows the state (op-

erable, inoperable, or degraded) of an item to be determined and the isolation of faults

within the item to be performed in a timely and e�cient manner." [Mil85]. Typical

testability measures are detectability and diagnosability.

In our approach testability analysis is less complex than the �nal test generation, i.e.

test generation that produces the �nal test set of the system after resource allocation.

Therefore, testability analysis can be done before this sophisticated test generation pro-

cess is carried out. Indeed testability analysis will deliver guiding attributes for this test

generation process. On the other hand the behavior of system components can be very

complex, thus approaches that rely purely on the system structure can not be applied.

Therefore, we have to use the second approach for testability analysis. The task of test

generation is taken over by the high-level version of PODEM, that delivers the superset

of system tests. Fault simulation has to be followed by a step that further processes

simulation results, since from these results the testability measures and the diagnostic

strategy can not be read out directly.

For testability analysis and diagnostic design, we use integrated diagnostics, that is

de�ned as: ". . . a structured process which maximizes the e�ectiveness of diagnostics by

integrating the individual diagnostic elements of testability, automatic testing, manual

testing, training, maintenance aiding, and technical information." [Kei90].

5.1 On Integrated Diagnostics

The main advantage of integrated diagnostics over traditional testability analysis meth-

ods is that it covers the whole life-cycle of the product and integrate di�erent aspects
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of maintainability, such as: minimized mean time to isolate system faults, minimized

mean time to repair, training, documentation [Cig89, JRF91, Ofs91].

One of the best elaborated approaches for integrated diagnostics is presented by

Sheppard et al. in [SS94]. (The book was preceded by a series of articles [SS92c, SS91c,

SS93a, SS93b, SS91a, SS91d, SS92b, SS92a, SS91b].) This approach is based on the

conclusion-test and test-test dependency relations, where conclusion is the isolation of

a fault, in our case fault of a component, and test is any information source relevant

to the diagnostic problem. Dependency relationships among tests and conclusions are

described in the form of a dependency graph.

In the dependency graph tests and conclusions are represented by nodes (graphically

tests are denoted by circles and conclusions by boxes) and dependencies are directed

edges. If a test T2 depends on T1 (if T1 fails T2 will also fail), then a path exists

from T1 to T2. Similarly if a test T3 depends on the conclusion C1 (if C1 fails T3

will also fail), then a path exists from C1 to T3. In general a test fails, if it does not

deliver the intended result. The adjacency matrix of the dependency graph, the so-called

dependency matrix, has two parts, one describing test-test dependencies (upper part)

and a second one describing conclusion-test dependencies (lower part). If conclusion

C3 depends on test T1 then the [3,1] element of the lower part is set. Based on the

dependency matrix di�erent testability measures can be computed:

� isolation level (the ratio of diagnosable faults)

� non-detection (fault coverage, the ratio of detectable faults)

� test leverage (robustness of the test set)

� overtesting (the ratio of uniquely diagnosable faults to the number of tests is

relatively high)

� undertesting (the ratio of uniquely diagnosable faults to the number of tests is

relatively low)

� test uniqueness (a test can detect/diagnose only one fault)

� test redundancy (multiple tests can detect and/or diagnose the same fault)

� false alarms (the cumulative e�ects of multiple faults produce identical syndromes

as a di�erent fault)

The main drawback of this approach is, that it does not use the physical model of the

system at all. Therefore only ad hoc methods exist for the assembly of the dependency

graph.
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5.2 Integrated Diagnostics and the Data
ow Approach

A natural idea is to try to combine integrated diagnostics and the presented data
ow

approach, in order to support testability analysis and diagnostic design. For this reason

the input model of integrated diagnostics has to be extracted from the data
ow model

and the test set of the system. It was shown in [CGPT94], that all dependency relations

that are necessary to build the dependency graph of the system can be obtained by

means of concurrent fault simulation. The algorithm of concurrent fault simulation is

very similar to discrete event simulation algorithms [ABF90, GA85, SS87, WA90], but

it lies outside the scope of this work. Therefore, the algorithm is not presented here.

5.2.1 Extracting the Input Model of Integrated Diagnostics

During concurrent fault simulation the tests of the system are evaluated. In a single run

one of the tests is taken, and test results are computed for all possible fault hypotheses

of the fault model, e.g. all single faults of the system. Simulation is done by propagating

the tokens from the primary inputs of the system to its primary outputs. Tokens that

are put onto the primary inputs correspond to the input mapping of the test vector,

while tokens that appear on the primary outputs of the system denote the results. This

way test results are assigned to each fault hypothesis of the fault model.

In integrated diagnostics the tests correspond to the tests of the system, while the

conclusions are associated with the fault hypotheses. The fault-free case is denoted by

conclusion C0 and test results of the fault-free system are used as reference. Consider a

test T1 and a conclusion C1: if the test result of T1 in case of the given fault di�er from

the reference result of T1 then the test depends on the conclusion and the dependency

C1 7! T1 can be added to the dependency graph. Otherwise no dependency relation

exists between C1 and T1.

5.2.2 Dealing with Uncertainty

In order to cope with the non-determinism of the model a probabilistic approach is pre-

sented in [SS91b]. It incorporates methods from fuzzy logic, Dempster-Shafer evidential

reasoning, and neural networks in order to be able to reason with incomplete and un-

certain data. The main problem with this method is that is was developed for hybrid,

dominantly analog, systems. Therefore, it can not be used for testability analysis and

diagnostic design of digital systems, where one has to cope with the large structural

complexity. Moreover, the approach, similarly to stochastic processes, relies on known

probabilistic values of various model parameters. This hinders the usage of the method

in high-level modeling. Since our goal is to try to avoid using stochastic processes when

dealing with non-determinism, uncertainty computation has to be solved di�erently.

Therefore, in accordance with the modeling approach, the notion of strong and weak

dependency is introduced.
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De�nition 5.1 A dependency relation between test T1 and conclusion C1 is called strong

dependency i� T1 always fails when C1 fails.

De�nition 5.2 A dependency relation between test T1 and conclusion C1 is called weak

dependency i� T1 fails only with respect of the data values when C1 fails.

Consider the candy automaton example, to show the di�erence between strong and

weak dependency: let C1 denote the erroneous state rec of coin in/out, T1 the test

generated in Chapter 4, and T1a and T1b the results on outputs out and change respec-

tively. Fault simulation delivers T1a = inc and T1b = x. In this case C1 7! T1a is a

strong dependency, since inc is always interpreted as incorrect, whereas C1 7! T1b is a

weak dependency, since x can be interpreted either as correct or incorrect depending on

the actual, as yet unknown value of data.

In the analysis this twofold interpretation of dependency causes that integrated diag-

nostics has to be executed twice: once when the input is the dependency graph containing

only the strong dependencies and once when the input is the dependency graph that

contains edges for both strong and weak dependency relations. The results of analysis

are referred to as pessimistic in the case when only strong dependencies are considered

and optimistic when both strong and weak dependencies are taken into account. From

the point of view of dependability measures the pessimistic case means the worst case,

i.e. the lower bound of the measures, and the optimistic case means the best case, i.e.

the upper bound of the measures. By estimating the lower and upper bound of the

measures an interval, the so called uncertainty interval, is given. The �nal value of the

measures (the one characterizing the fully speci�ed system) is within this interval.

5.3 Testability Measures after Re�nement

The main cornerstone of the above statement is, whether the �nal measures really fall

into the interval de�ned by the results of higher level analysis. For this reason it has to

be shown that during successive steps of model re�nement the lower- and upper bounds

of the interval converge to each other thus the size of the interval decreases. To ful-

�ll this requirement it is necessary (and as it turns out su�cient too) that if a fault

was not detectable before re�nement, the corresponding faults remain not detectable af-

ter re�nement and if a fault was detectable before re�nement, the corresponding faults

are detectable after re�nement. By proving this it can be assured, that if the rules of

re�nement in subsequent steps of modeling are not violated, the interval of testabil-

ity measures monotonically decreases and the measures converge to their �nal value.

However to prove this behavior some formalization is necessary.

De�nition 5.3 The computation of a data
ow network is a relation CP : IM? � S 7!

OM?, where M =
S
8n2N Mn and
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IM - input mapping, IM =M i; i = kIk

OM - output mapping, OM = (M�)o; o = kOk

Informally the computation of the data
ow network can also be described as a �nite

or in�nite �ring sequence that starts from the initial state s0.

De�nition 5.4 The fault set F contains all possible fault hypotheses of the given fault

model. Let f0 2 F denote the fault-free system.

According to the de�nition, F de�nes the set of faults, for which tests have to be

generated, and in presence of which the testability measures of the system have to

be evaluated. For example in case of a single-fault model, the elements of F are all

possible single-faults of the system. If each component has only one fault, the number

of hypotheses in F is equal to the number of components plus one.

De�nition 5.5 A test t for fault f 2 F is de�ned by tv the test vector (that is indeed

a sequence of vectors). tv 2 IM?.

T de�nes the test set, that consists the tests, which are generated for the di�erent

faults of the system. Cardinality of F and T however is not equal, it is possible, that

more than one test is generated for a given fault. t 2 T is a test for fault f i� the

test results tr0 and trf di�er, where cp0 = ((tv; s0); tr0) and cpf = ((tv; s); trf ) are the

computations of the data
ow network when test vector tv is applied to the primary

inputs in the fault-free state as well as in the faulty state of the system. tr0 and trf

di�er i� jtr0j = jtrf j and 9a 2 tr0, b 2 trf such that a and b di�er. Since jaj = jbj, a and

b di�er i� 9c 2 a, d 2 b such that c 6= d, where a 2 (M�)o, b 2 (M�)o, c 2M�, d 2M�.

In the above case cp0 and cpf are two possible executions of test t with respect to the

states of DFN.

De�nition 5.6 Test t is called a certain/uncertain test for fault f , i� tr0 and trf di�er

not only/only by uncertain tokens, i.e. by x tokens.

Test certainty has to be introduced according to the non-deterministic modeling

approach. This is in accordance with the informal description of strong and weak de-

pendencies.

De�nition 5.7 A fault f is not detectable/uncertainly detectable/certainly detectable

if no test exists/an uncertain test exists/a certain test exists for it. The sets of not

detectable faults/uncertainly detectable faults/certainly detectable faults are denoted by

Fn, Fu, Fc respectively, where Fn \ Fu = Fn \ Fc = Fu \ Fc = ; and Fn [ Fu [ Fc = F .

The introduction of the notion of fault detection is necessary since calculation of the

testability measures are based on the cardinality of the set of detectable/not detectable
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faults, or with the terms of integrated diagnostics on the existence or absence of depen-

dencies. If a fault is not detectable, it is not an element of any dependency relation. If

the fault is uncertainly detectable it is element of a weak dependency relation. Finally

if a fault is certainly detectable, it is element of a strong dependency relation.

Now we can formulate and prove the theorem, which states that after re�nement

if the cardinality of the fault set remains the same the number of detectable faults

under pessimistic assumptions will be larger then before re�nement, while the number

of detectable faults under optimistic assumptions will be smaller then before re�nement.

Theorem 5.1 Let L1 and L2 be two di�erent levels of modeling, DFN1 and DFN2

the two corresponding data
ow networks, and R the transformation from L1 to L2. If

R is a re�nement and kF 2k = kF 1k, then

kF 2
c k � kF 1

c k and kF 2
nk � kF 1

nk

Proof The theorem will be proven in three steps: (1.) It will be shown, that if f1

is certainly detectable, then 8f2 is also certainly detectable, where f2 2 R(f1). (2.)

If f1 is not detectable, then 8f2 is also not detectable, where f2 2 R(f1). (3.) If f1

is uncertainly detectable, then 8f2 is either not detectable, or certainly detectable, or

uncertainly detectable, where f2 2 R(f1). If these three steps are proved, the statement

of the theorem is proved.

Step 1: According to De�nition 5.7 if f1 is certainly detectable then t1 a certain test

exists. De�nition 5.6 says that in this case DFN1 will deliver some non-x tokens, i.e.

some certain tokens. The de�nitions of re�nement state, that if a �ring rule r1 delivers a

non-x token, then 8r2 2 R(r1) also delivers a non x token. (Elements from the partition

of certain tokens will not be moved to the partition of uncertain tokens.) By exploiting

the composition of nodes, it can be proven by induction, that if DFN1 produces some

non x tokens, than DFN2 also produces non x tokens. Thus 8t2 2 R(t1) is a certain

test for f2; therefore, f2 is certainly detectable.

Step2: The detailed proof is omitted since it can be done similarly as in Step 1,

except that here we have to argue that no test exists for f1, i.e. the test results for f10
and f1 do not di�er.

Step3: If f1 is uncertainly detectable, then the test results for f10 and f1 di�er

only by x tokens (see De�nition 5.7 and De�nition 5.6). According to the de�nitions of

re�nement, if �ring rule r1 delivers x tokens, then r2 2 R(r1) can deliver both x and

non x tokens. Again using the composition of nodes it can be shown by induction, that

when x tokens in r1 are re�ned to non x tokens in r2, f2 gets either certainly detectable

(test results di�er by not only x tokens), or not detectable (test results do not di�er).

When x tokens in r1 remain x tokens in r2, f2 remains uncertainly detectable. 2

The restriction that the cardinality of the fault set must remain the same during

re�nement is important from the point of view of the theorem. If this condition does

not hold, then it is insu�cient to reason about the cardinality of Fn, Fu, and Fc. Instead,
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a weighted sum of the faults belonging to these sets has to be computed, and we can

reason only about the convergence of the measures regarding the original model, i.e. the

one before re�nement.

The reason for this is that the suggested method for testability analysis computes the

so-called combinatorial testability measures. It has to be done in cases when no a priori

statistical information about fault probabilities is available, e.g. the probabilities of fault

detection can not be computed as the testability evaluation is typically performed prior

to the resource allocation phase. This is the case in our modeling approach, which does

not use fault probabilities. Note, that every fault coverage based testability measure in

the literature still assumes implicitly the same premise of equiprobable faults. In our

method testability measures are computed according to this assumption. For example

if the system has 10 faulty states the conditional probability that the system is in one

of them, supposed that it is faulty, 10%.

After model re�nement not only the uncertainty of the model can decrease, but it

is also possible that faulty states of the data
ow nodes are re�ned. Let us suppose a

system that consists a single node which has three states ok, fty1, and fty2 for which

Fn = ffty1g, Fu = ;, and Fc = ffty2g. According to the assumption of testability

analysis both fty1 and fty2 can occur with the same 50% probability. Detectability of

the system in this case is 50%.

Now let us further suppose that the system is re�ned into a node which has now four

states ok, fty1a, fty1b, and fty2, which means that state fty1 has been re�ned into the

states fty1a and fty1b such that Fn = ffty1a; fty1bg, Fu = ;, and Fc = ffty2g. Now

testability analysis has to be executed and since there is no uncertainty inherent to the

model, we expect a detectability of 50%. However classical testability analysis assuming

equiprobable faults, i.e. P (fty1a) = 1=3, P (fty1b) = 1=3, and P (fty2) = 1=3 results a

detectability of 33%. It clearly contradicts the previous assumption that P (fty2) = 1=2.

Therefore, the fault probabilities have to be computed regarding the fault probabilities

before model re�nement, i.e. P (fty1a) = P (fty1b) = P (fty1)=2.

According to the probabilities the weighted sum of the fault sets has to be used in

computation of testability measures. In the example kF 1
nkw = 1, kF 2

nkw = 1, kF 1
d kw = 1,

and kF 2
d kw = 1 that yields a detectability of 50% where k kw denotes the weighted car-

dinality of the sets with respect to the same sets before re�nement. These computation

will result the testability measures regarding the original model. If computation of

testability measures is done in this way then our statement about convergence of the

measures and decreasing uncertainty interval is true independently of the cardinality of

fault sets.

5.4 Testability Analysis of the Example

The candy automaton example is used to explain the process of testability analysis.

The test set of the system consists three tests, generation of one of which was shown in
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primary inputs

test coin in select candy

T1 ok ok

T2 inc ok

T3 ok inc

Table 5.1: Test Vectors for the Candy Automaton

Chapter 4. The input mappings, i.e. the test vectors, of the tests are given in Table 5.1,

while the interpretation of the test is the following:

T1 We select a candy by typing the identi�er of the candy correctly. Then we put in

the correct amount of money in valid coins. This test was generated for the int

error of the controller.

T2 We select the candy correctly by typing a valid candy identi�er. Then we put in some

invalid coins, e.g. Hungarian Forints instead of Cents. The test was generated for

the int error of the controller.

T3 We type an invalid candy identi�er, that leads to incorrect candy selection. Then

we put in the right amount of money in valid coins. This test was generated for

the ctrl error of candies out.

In the next step fault simulation is done under the assumptions that only one compo-

nent can be faulty at a time (single fault model), the erroneous state stk of candies out

is not allowed, and the faults of the components are permanent. The results of fault

simulation are summarized in Table 5.2. The rows of the table show the test vector of

the actual test (inputs), the current state of the system (system state), and the results

of the test (outputs).

According to the notation of integrated diagnostics and to the fault hypotheses �ve

possible conclusions can be considered: C1 is coin in/out=rec, C2 is select=cont, C3 is

controller=int, C4 is candies out=ctrl, and �nally the conclusion no fault is denoted

by C0. The primary outputs out and change, that are the actual information sources

in integrated diagnostics, are referred to as T1a, T2a, T3a and as T1b, T2b, T3b.

The extracted dependency graph of the example is given in Figure 5.3, while the

dependency matrix for the example is shown in Table 5.3. In the dependency matrix

F denotes "strong" dependency and f denotes "weak" dependency. In the dependency

graph solid lines present "strong" dependency, and dashed lines present "weak" depen-

dency.

As an example for the extraction of the dependency graph consider the following

case: each time the tokens ok, ok are assigned to the inputs and coin in/out fails,

test result T1a will also fail as denoted by the inc result on out. In the dependency

graph this strong dependency is represented by the solid line from C1 to T1a, while in
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inputs system state outputs

coin in select candy coin in/out select controller candies out out change

ok ok ok ok ok ok ok ok

ok ok rec ok ok ok inc x

ok ok ok cont ok ok inc ok

ok ok ok ok int ok inc inc

ok ok ok ok ok ctrl inc ok

inc ok ok ok ok ok inc ok

inc ok rec ok ok ok inc x

inc ok ok cont ok ok inc ok

inc ok ok ok int ok x inc

inc ok ok ok ok ctrl x ok

ok inc ok ok ok ok inc ok

ok inc rec ok ok ok inc x

ok inc ok cont ok ok inc ok

ok inc ok ok int ok x inc

ok inc ok ok ok ctrl x ok

Table 5.2: Results of Fault Simulation

T1a F f f

T1b F F f f f f

T2a F f

T2b F f f F f f

T3a f F

T3b F f f f f F

C1 F f F f F f

C2 F F F

C3 F F f F f F

C4 F f f

C0 F F

T1a T1b T2a T2b T3a T3b

Table 5.3: Dependency Matrix for the Example
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T1a

T1b

T2a

T2b

T3a

T3b

C0

C4

C3

C2

C1

Figure 5.3: Dependency Graph for the Example

the dependency matrix by the element [7,1]=F. In the same case test result T1b is data

dependent (output change is x). This weak dependency is represented by the dashed

line from C1 to T1b and by the matrix element [7,2]=f.

Since the example is simple not all of the previously mentioned testability measures

of integrated diagnostics are really meaningful. The most important results delivered

by integrated diagnostics are:

� It can be seen from the dependency matrix, that none of the tests produces the

same test result in the error-free case and in the erroneous case. Thus fault coverage

is 100%, all faults can be detected in both the pessimistic and in the optimistic

case.

� Isolation level equals to the ratio of uniquely isolatable groups to all fault conclu-

sions and denotes the ratio of diagnosable faults. In the pessimistic case conclusions

can be divided into three groups according to the test results enlisted in the de-

pendency matrix. Group1 is C1 and C3, group2 isC2, group3 is C4. Therefore, the

value of isolation level is 3=4 = 0:75. In the optimistic case the number of groups

is 4, thus isolation level is 1:0 indicating, that all of the faults can be diagnosed

although tests have been generated only for the controller and for candies out.
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� T2 and T3 are redundant, since they deliver the same result in all cases. Hence,

one of them can be left out during the system test.

5.5 Contribution

In this chapter I gave an approach for testability analysis and diagnostic design. It is

based on integrated diagnostics whose inputs model is generated by concurrent fault

simulation. I extended integrated diagnostics in order to cope with non-determinism. I

proved that the uncertainty interval of the testability measures regarding the original

model monotonously decreases if the rules of model re�nement are not violated.

� I gave an approach to extract the input model of integrated diagnostics from the

data
ow model. Concurrent fault simulation has to be executed in advance for

each element of the fault set, in order to examine the e�ects of the faults on

the tests. The results of the di�erent simulation runs together builds the fault

dictionary of the system. It consists the information whether a test depends on

a given fault. These dependencies in form of a test-dependency matrix form the

input model of integrated diagnostics that can now be executed.

� I extended the method of integrated diagnostic in order to deal with modeling and

functional uncertainty. I introduced the notion of strong- and weak dependency.

If a test always detects a fault, then the dependency is strong. If in some cases the

test does not detect a fault, but in some other cases it does, then the dependency

is weak. Integrated diagnostics has to be executed two time. Once by considering

only strong dependencies and once by considering both strong- and weak depen-

dencies. In the former case the pessimistic testability measures, while in the latter

case the optimistic measures are computed. The �nal values of the measures lie

within this uncertainty interval.

� I proved that the uncertainty interval of diagnostic measures regarding the origi-

nal model decreases and the measures monotonously converge to their �nal value

if and only if the rules of model re�nement are kept. In order to prove it the

faults are grouped into three categories: not detectable, uncertainly detectable,

detectable. I proved that after re�nement: 1) if a fault was not detectable it

remains not detectable, 2) if a fault was detectable it remains detectable, 3) if a

fault was uncertainly detectable it falls into one of the three categories. As a result

the pessimistic testability measures regarding the original model monotonously in-

crease, the optimistic measures monotonously decrease. Therefore the uncertainty

interval monotonously decreases.



Chapter 6

An Application Study

The candy automaton presented in the previous chapters is a very small example, that

is only useful to demonstrate the features of the framework but it has to be shown on

an industrial size pilot application that the developed methods and algorithms are also

useful in realistic applications. For this reason the model of a multiprocessor system,

called MEMSY [CHG+94], is presented. The detail of modeling is the same as in [Cse97],

but in this work due to space limitations only some selected parts of the system are shown

that are characteristic for the application and for the approach.

6.1 MEMSY

MEMSY is a modular expandable multiprocessor system. The basic unit of the system

is a single node, which is a multiprocessor, shared memory machine consisting of up to

4 processors (CPU), 8 memory management units and cache memories (CMMU), hard

disc, LAN adapter, communication memory adapters, and additional support circuits.

The CPUs and CMMUs can work either stand-alone or can be connected pairwise in

master-checker (M/C) con�guration.

Nodes are able to work stand-alone too, but �ve such nodes connected to one pyra-

mid, build the base of expandability of MEMSY. Four of the �ve nodes are the workers

and the �fth is a supervisor. In the �fth node a watchdog processor can be found, that

helps the work of the supervisor node. Communication among nodes within and outside

of pyramids happens by message passing via memory boxes (so called communication

memory).

MEMSY is a system already developed and implemented system; therefore, modeling

and evaluation aim at a post design analysis. This fact does not restrict the expressive-

ness of the example, but some considerations are necessary in the model construction

phase. Since it is a general purpose system, modeling is done from the perspective of

hardware. The neglected software aspects appear as random choice among multiple en-

abled �rings in the model of software related components. For example the target of a

CPU write, memory or peripheral device, can not be decided uniquely. It is explained in
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more detail in the subsequent section of CPU modeling. This increased uncertainty does

not a�ect the results of evaluation, it just increases the execution time of the evaluation.

6.1.1 Modeling

The system architecture allows multiple system con�gurations, depending on how the

CPUs and CMMUs are used, i.e. in stand-alone or in master-checker mode. The eval-

uation aims at comparing the testability measures of the basic con�gurations. For this

reason the following three detailed models are built:

MEMSY-I Within the simplest setup the processor card contains 1 CPU. The 8 CMMUs

are split into 4 code and 4 data CMMUs, that work in stand-alone mode.

MEMSY-II Using this setup the processor card contains 2 CPUs that are connected in

master-checker con�guration. 4 CMMUs are assigned to each CPU. The 4 CMMUs

of a CPU are split into 2 code and 2 data CMMU that work in stand-alone mode.

MEMSY-III Applying this con�guration the processor card contains 2 CPUs that work

in stand-alone mode. To each processor 4 CMMUs are assigned that work pairwise

in master-checker con�guration. One pair is used as a code CMMU and the other

is as data CMMU.

The system is modeled at functional block level where data and control paths are

separated and data
ow nodes represent hardware components like: CPU, CMMU, hard

disc, hard disc controller, LAN controller, watchdog, terminal, etc. Due to space limi-

tation only one of the above models, MEMSY-I, is explained in this work.

Fault model

The fault model is very simple, only the faults in the data processing and propagation

parts are considered. Therefore, tokens are classi�ed similarly to the candy automaton

example according to the correctness of the data value that is represented by the token:

ok This token denotes that the data value is correct. For the sake of simplicity ok

tokens are coded by 0 in the formal description.

inc This type of token denotes that the data value is incorrect as a result of some

component fault. Inc tokens are denoted by 1 in the description of �ring rules.

x This token is necessary to model uncertainty, i.e. when correctness of the data value

can not be decided. These tokens are denoted by 2 in the formal notation.

In most of the components the error propagation function is supposed to correspond

to the PMC fault invalidation model. Table 6.1 shows the basic cases of this type of

error propagation.
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input state output

ok error-free ok

ok erroneous x

inc error-free inc

inc erroneous x

Table 6.1: PMC-like Error Propagation Function of the Components

Description of MEMSY-I

The model of MEMSY-I is presented in Figure 6.1. The �ve main parts of the system are:

processor card, main memory, VME subsystem, utility subsystem, and communication

subsystem. The S-BUS arbiter (S-ARB) is depicted in the central part of the �gure. It

is responsible for arbitrating the system bus and this way connecting the di�erent parts

of the system. Each valid S-bus access is indicated by the arbiter via a run LED.

The upper part of the �gure (above the arbiter component) shows the processor card.

It contains the processor (CPU), the master-checker unit of the CPU (CPU-MC), the

cache and memory management units (CMMU) and their master-checker units (CMMU-

MC), a selector that selects one of the 8 CMMUs (CMMU-SEL8), and an address-data

demultiplexer (AD-DMPX). The demultiplexer is necessary since on the processor bus

(P-BUS) address and data are multiplexed but on the system bus (S-bus) they are not

multiplexed. An additional component that is only necessary in the modeling is the

CPU selector (CPU-SEL), that sends the signals of one of the CMMUs to the CPU.

The main memory of the system (MEM) is a normal dynamic RAM. It is possible

to use error correcting memory as the main memory of the system, but the modeled

con�guration at the University of Erlangen contained normal memory.

The VME subsystem is connected to the S-bus by an S-bus VME bus converter

(S-VME). To the VME bus are attached the SCSI disc (DISC) via a controller (SCSI),

the watchdog processor (WDP) if the node is a supervisor node, the ethernet controller

(LAN), and an interrupt controller (ITC). The interrupt controller receives the interrupts

from neighboring nodes in case they placed a message into the communication memory.

The communication subsystem contains the communication memory controller

(CMC), the communication memory (CM), and the coupling units (COUPL) that con-

nect the multiple CMs to the controller by providing a simple fault-tolerant routing.

The communication memory is a dual ported RAM.

The utility bus (U-bus) connects the components of the utility subsystem. They

are the static RAM (SRAM), the NVRAM that contains information about system

con�guration, a CIO, a DUART, the interrupt controller (IT-CONV), and the reset logic

(RESET). Although the master-checker interface (MCI) belongs to the processor card,

it can be found in this lower part of the �gure. The interrupt controller is connected to

the interrupt controller for neighborhood communication, handles the interrupt signals
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Figure 6.1: A MEMSY node with 1 CPU and 8 CMMUs
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item: basic extended

components 29 29

nodes 46 46

channels 382 382

PIs 6/22 6/22

POs 6/22 6/22

states (�) 72 152

states � 6x106 � 6x1016

�ring rules 678 6799

PN states 1132 7333

PN transitions 1356 13598

Table 6.2: Statistics of MEMSY-I

of the VME bus as well as of the utility subsystem, e.g. from the DUART.

6.1.2 Model Statistics

To get a feeling about the complexity of the model Table 6.2 shows some statistics about

the size of the data
ow network. The �rst column contains the items of the network,

while the second column gives the number of items in the basic, error-free system. Finally

the third column contains the parameters of the extended system model.

The number of PIs and POs should be interpreted in the following way: x/y means

that when the node is stand-alone the value x is valid, e.g. the inputs of the watchdog

do not count in this case, otherwise value y is valid. The sum of the states of the

components is given by state (�), whereas the state of the network, that is composed

from the states of the components is denoted by states.

In the last two rows the parameters of the isomorphic Petri net are given. The Petri

net is composed by using the DFN-PN transformation suggested in [Cse93, CBBS94].

Note that the number of the Petri net objects is really huge! A Petri net of this size is

hardly editable in contrast to the size of the data
ow network of Figure 6.1.

Many of the parameters of the network are computed from the parameters of the

individual nodes, whose parameters are given in Table 6.3. The table consists of 3

columns: the name of the node, the parameters of the error-free node, and the parameters

of the erroneous node. Parameters of the nodes are the following: number of inputs,

number of outputs, number of states, and the number of �ring rules.

6.2 Model of the CPU

According to its Harvard architecture the CPU, a Motorola 88000, is connected to two

di�erent sets of CMMUs. One is the set of code CMMUs and the other is the set of data
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component: basic extended

AD-DMPX 32 24 1 32 32 24 2 160

CIO 2 2 2 3 2 2 3 9

CM 6 6 1 4 6 6 5 106

CMC 9 11 1 9 9 11 2 98

CMMU 6 12 8 22 6 12 24 168

CMMU-MC 12 7 2 8 12 7 4 368

CMMU-SEL8 6 12 1 24 6 12 2 80

COUPL 24 24 5 32 24 24 5 160

CPU 6 6 4 23 6 6 20 222

CPU-MC 6 4 2 6 6 4 4 44

CPU-SEL 8 4 1 8 8 4 1 16

DISC 3 2 1 2 3 2 5 53

DUART 4 4 1 5 4 4 3 39

EPROM 1 1 1 1 1 1 2 2

IT-CONV 10 3 1 10 10 3 2 24

ITC 6 6 1 9 6 6 2 18

LAN 3 4 2 5 3 4 5 23

MCI 10 2 11 20 10 2 12 30

MEM 3 3 1 2 3 3 5 53

NVRAM 2 1 1 2 2 1 3 12

RESET 4 14 1 4 4 14 2 8

S-ARB 37 38 10 132 37 38 10 660

S-UB 9 14 1 17 9 14 2 138

S-VME 6 6 1 7 6 6 2 54

SCSI 4 6 3 5 4 6 8 50

SRAM 2 1 1 2 2 1 3 12

TERM 2 2 1 2 2 2 2 12

VME-ARB 8 10 4 18 8 10 8 84

WDP 10 2 2 12 10 2 4 156

Table 6.3: Statistics of the Components
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Figure 6.2: Data
ow Model of the CPU

ID name description

0 cpu ok end fetch end of a fetch cycle

1 cpu ok end read end of a read cycle

2 cpu ok end write end of a write or read-modify-write cycle

3 cpu ok end read(ex,it) end of an exception or IT handler address read

Table 6.4: States of the CPU (Basic Operation)

CMMUs. The CPU supports master-checker con�guration; in modeling the CPU and

its master-checker (MC) interface are separately modeled as two functional units. The

node called CPU operates like a normal CPU without master-checker feature and the

node called CPU-MC is responsible for the comparison of the signals of two CPUs. In

this section only the modeling of the CPU is discussed. The data
ow model of the CPU

is given in Figure 6.2, while the rather long, detailed presentation is left to Appendix D.

The inputs of the CPU are connected to the data and code CMMUs, to the reset

logic (RESET), and to the interrupt controller (IT-CONV). The outputs of the CPU

are connected to the MC units (CPU-MC). The inputs are (on the left side of the Figure

from top to the bottom): data input, data status, code input, code status, interrupt

signal, reset signal. The outputs are (on the right side of the Figure from top to the

bottom): data, data address, read/write, code address, code fetch. According to the

master-checker scheme the outputs are doubled and lead to the two MC units.

6.2.1 Basic Operation of the CPU

The CPU is supposed to be able to execute the following operations: code fetch, data

read, data write, data read-modify-write, reset, interrupt handling, and exception han-

dling. ALU functions are only implicitly modeled, they are hidden between data read

and data write cycles. The FSM model that describes these operations is presented in

Figure 6.3. The identi�er and the description of the states are given in Table 6.4. The

�ring rules that describe the above operations are copied here from Appendix D.

In the simplest operation, when a code fetch cycle is �nished, the CPU starts either
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r0, r1, r4, r5, r11 r14
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r39

3

0 1

2

Figure 6.3: FSM Model of the CPU (Basic Operation)

a new fetch cycle, or a read cycle, or a write cycle, or a read-modify-write cycle. (The

latter one is described by consecutive read and write cycles, without code fetch between

them.) After �nishing the read, write, or read-modify-write cycle the CPU carries on

its operation by fetching the code of the next instruction.

A somewhat more complex operation is characterized by handling the reset, inter-

rupt, and exception signals. In case of a reset signal the CPU starts a code fetch cycle.

Reset can be risen in any state of the CPU and will be processed immediately. Interrupt

can be signaled in every state of the CPU, but processing is delayed until �nishing the

current fetch, read, write, or read-modify-write cycle. Processing of the interrupt starts

with a read cycle, that reads the address of the interrupt handler, and is carried on by

fetching the �rst instruction of the interrupt handler routine. In our model the only

exception is the erroneous memory or IO read that is signaled by the CMMUs (trans-

action fault). In this case the address of the exception handler is read immediately by

a read cycle, and then the �rst instruction of the exception handler routine is fetched.

code fetch

Firing r11 denotes the simplest case of code fetch. The CPU is in its initial state (that

is the one after a previous code fetch), receives the instruction code on c in, remains in

the same state and rises the cfetch 1 and cfetch 2 signals.

r11 =< 0; c in = 0; 0; cfetch 1 = 0; cfetch 2 = 0; 0 >

data read

The data read cycle is started after a fetch cycle (�ring r14), in the initial state of the

CPU. The lines rw 1 and rw 2 are driven, and the node goes into state 1 and waits for
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the data to arrive. Firing r26 denotes the second phase of read, when data is received

on d in. As a result the CPU goes into the initial state and starts a code fetch.

r14 =< 0; c in = 0; 1; rw 1 = 0; rw 2 = 0; 0 >

r26 =< 1; d in = 0; 0; cfetch 1 = 0; cfetch 2 = 0; 0 >

data write

Data write is started after a successful code fetch. Firing r17 denotes the phase when

the lines rw 1 and rw 2 are driven and the data is put on d 1 and d 2. The write cycle

is carried on by starting a code fetch, that is described by �ring r33.

r17 =< 0; c in = 0; 2; d 1 = 0; d 2 = 0; rw 1 = 0; rw 2 = 0; 0 >

r33 =< 2; ; 0; cfetch 1 = 0; cfetch 2 = 0; 0 >

data read-modify-write

In case of read-modify-write, after reading the data from d in the CPU executes the

�rst phase of a write cycle instead of initiating a code fetch: lines rw 1 and rw 2 are

driven and data is put on d 1 and d 2. The second phase of write is denoted by �ring

r33.

r29 =< 1; d in = 0; 2; d 1 = 0; d 2 = 0; rw 1 = 0; rw 2 = 0; 0 >

reset

Reset has to be executable in any state of the CPU at any possible input mapping when

the line rst is driven by another component. Upon reset the CPU starts a code fetch,

and enters its initial state.

r0 =< 0; rst = 0; c in = 0; cr in = 0; 0; cfetch 1 = 0; cfetch 2 = 0; 6 >

r1 =< 0; rst = 0; c in = 0; 0; cfetch 1 = 0; cfetch 2 = 0; 5 >

r4 =< 0; rst = 0; it = 0; 0; cfetch 1 = 0; cfetch 2 = 0; 5 >

r5 =< 0; rst = 0; 0; cfetch 1 = 0; cfetch 2 = 0; 4 >

r20 =< 1; rst = 0; d in = 0; dr in = 0; 0; cfetch 1 = 0; cfetch 2 = 0; 4 >

r21 =< 1; rst = 0; d in = 0; 0; cfetch 1 = 0; cfetch 2 = 0; 3 >

r24 =< 1; rst = 0; 0; cfetch 1 = 0; cfetch 2 = 0; 2 >

r32 =< 2; rst = 0; 0; cfetch 1 = 0; cfetch 2 = 0; 1 >

r34 =< 3; rst = 0; d in = 0; dr in = 0; 0; cfetch 1 = 0; cfetch 2 = 0; 3 >

r35 =< 3; rst = 0; d in = 0; 0; cfetch 1 = 0; cfetch 2 = 0; 2 >

r38 =< 3; rst = 0; 0; cfetch 1 = 0; cfetch 2 = 0; 2 >

interrupt handling

The interrupt signal it is sampled only in the initial state of the CPU. The signal can

arrive alone (�ring r10) or with the instruction code together (�ring r7). As a result
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the CPU starts a read cycle by setting the outputs rw 1 and rw 2 and enters state 3, in

order to read the interrupt vector.

r7 =< 0; it = 0; c in = 0; 3; rw 1 = 0; rw 2 = 0; 2 >

r10 =< 0; it = 0; 3; rw 1 = 0; rw 2 = 0; 1 >

exception handling

In our case exception is the transaction fault signaled by the CMMU on the line cr in

(�ring r6) or on dr in (�ring r25). As in case of interrupt the address of the handler

routine has to be read by setting the signals rw 1 and rw 2. The CPU enters state 3

and waits for the data to arrive. Afterwards the �rst instruction of the handler routine

is fetched.

r6 =< 0; c in = 0; cr in = 0; 3; rw 1 = 0; rw 2 = 0; 3 >

r25 =< 1; d in = 0; dr in = 0; 3; rw 1 = 0; rw 2 = 0; 1 >

r39 =< 3; d in = 0; dr in = 0; 3; rw 1 = 0; rw 2 = 0; 1 >

r40 =< 3; d in = 0; 0; cfetch 1 = 0; cfetch 2 = 0; 0 >

6.2.2 Extended Operation of the CPU

The extended operation of the CPU corresponds the PMC fault model. The set of states

is augmented by the states that describe the behavior of the CPU in the following cases:

� The CPU is error-free and the read data is corrupted (erroneous colored tokens on

d in or c in). Erroneous control signals are not considered. The additional states

are: s4, s5, s6.

� The CPU is error-free and the read data is possibly corrupted (as uncertain colored

tokens on d in or c in). Erroneous or possible erroneous control signals are not

considered. The additional states are: s7, s8, s9, s10.

� The CPU is erroneous and error-free tokens are received on the data and control

lines. In this states the CPU is supposed to deliver error-free control signals rw,

cfetch, da, ca, and erroneous data signals d. The additional states are: s11, s12,

s13.

� The CPU is erroneous and the read data is corrupted (erroneous colored tokens on

d in or c in). The input and output control signals are error-free. The additional

states are: s14, s15, s16.

� The CPU is erroneous and the read data is possibly corrupted. Input and out-

put control signals are error-free, data signals are denoted by mostly uncertainly

colored tokens. The additional states are: s17, s18, s19.
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The set of �ring rules is extended in order to describe the erroneous behavior of the

system. For each set of additional states about the same number of rules is produced as

for the basic operation. Due to space limitation the �ring rules are not explained here

in detail, nor the FSM describing the behavior of the extended operations.

6.2.3 Uncertainty E�ects

As already mentioned, the model of MEMSY is hardware related and the neglection of

software causes further uncertainties. A good example for this additional uncertainty is

presented in the following.

Consider the initial state s0 of the CPU. The code fetch is �nished, but there is

no di�erentiation between the instructions, we do not know whether a fetch, a read, a

write, or a read-modify-write cycle has to be started. Therefore, a random selection is

necessary among the �ring rules that describe the above cycles.

Another example is the addressing on the S-bus. Since data values are not considered,

the bus arbiter can not decide to which peripheral device the tokens have to be sent.

Selection is done randomly again.

If we know the software details the sequence of instructions could be decided and

the addressing of peripherals on the buses would have been unique.

6.3 Evaluation

The evaluation of the three MEMSY models aims at the comparison of the testability

measures of the systems. In the �rst step tests are generated for the erroneous states of

the nodes under the single fault assumption. The next step is concurrent fault simula-

tion, that is done under the single fault assumption too. Finally, in the third step the

dependency graph is constructed and integrated diagnostics is executed. The �rst two

steps of the evaluation are automated. The programs were run on an AlphaServer 2100

under OSF 3.2 in user mode at the Information Science III Department of the University

of Erlangen. Unfortunately the results of the evaluation could not been compared to the

results delivered by other, known tools, since in the knowledge of the authors no similar

testability analysis environment exist yet.

6.3.1 Test Generation

In the MEMSY example the operating SW is either neglected or its model is embedded

into the DF description of the HW components (implicit SW model). Together with

the PMC-like fault propagation model it results a considerably high degree of nondeter-

minism, that leads to a high memory consumption in case of list based test generation.

Therefore; the presented tests have been generated by a modi�ed version of the PO-

DEM algorithm (see Chapter 4), in which simple tokens are propagated instead of lists

of tokens.
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MEMSY-I MEMSY-II MEMSY-III

AD-DMPX AD-DMPX AD-DMPX

CMMU-D1 CMMU-D1 CMMU-D1

CMMU-MC-D1 CMMU-MC-D1 CMMU-MC-D1

CMMU-SEL

CPU1 CPU1 CPU1

CPU-MC1 CPU-MC1 CPU-MC1

DUART DUART DUART

EPROM EPROM EPROM

IT-CONV IT-CONV IT-CONV

MEM MEM MEM

NVRAM NVRAM NVRAM

S-UB S-UB S-UB

S-VME S-VME S-VME

SCSI SCSI SCSI

SRAM SRAM SRAM

TERM1 TERM1 TERM1

TERM2 TERM2 TERM1

VME-ARB VME-ARB VME-ARB

Table 6.5: Components for Which Test Generation Was Successful

Therefore, the generated networks are only potential test candidates, i.e. it is possible

that the result of test generation is not a test since error propagation does not deliver

error pairs in each possible case of execution (refer to De�nition 5.5). For this reason

the feasibility of the results has to be controlled by fault simulation. In case of a positive

answer a test is found. Tests in the MEMSY model seem to be pure hardware tests, but

they also need some software support to be executed, i.e. the propagation path through

the bus arbiter was selected randomly, but it has to be made sure by software, that

during testing the same path is used.

In the MEMSY example tests could not have been generated for each fault of the

system. Table 6.5 shows the components, for which test generation was successful.

Concerning the results two important observation can be done: 1) test exists only for

about 40% of the components, 2) the components for which test exists are the same for

all three systems. This, at �rst sight, low e�ciency of test generation is a result of many

factors:

� very pessimistic fault propagation model (PMC)

� high degree of uncertainty (modeling of SW)

� relatively small number of POs
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� nontestable components (fault tolerance)

� lack of information for modeling (CPU card)

� modeling of a single node

Since MEMSY is a fault-tolerant system, there are components that support to

achieve fault tolerance. Such components are usually nontestable. These components

are mainly the mater-checker units (7 of them), the master-checker interface (MCI), the

WDP, the CMMUs (7 of them), and the reset logic (RESET). Unfortunately, there were

components for which very few information was available, due to Motorola's reluctance.

They are related mainly to the CPU card, and to the disc sub-system. Finally there are

components, which can meaningfully function only in a multi-node con�guration. These

components are the ethernet controller (LAN), the watchdog processor (WDP), and

the inter-node communication components as well (CMC, COUPL1, COUPL2, CM).

Taking the above facts into consideration, the e�ciency of test generation could not be

characterized too bad any more.

In the three di�erent setups of MEMSY the same components are used, they dif-

fer only in some minor con�guration modi�cations that aim increased fault tolerance.

Therefore; tests of the three systems are very much the same, and components for which

test generation delivered positive results are almost the same. It shows that testability

in our example is independent of the structure and is determined by the function of the

components. (Although the structures of the three systems are similar.)

Finally, Figure 6.4 shows the data
ow model of one of the tests. It has been generated

for the fault of Terminal #1 (TERM1). The test is started by typing a character on

TERM1. As a result the DUART component initiates an interrupt at the CPU. The

CPU reads the interrupt vector, that shows to the lower part of the memory. Suppose

that the EPROM is mapped to this part of the memory. Therefore, the CPU starts to

execute the interrupt routine by fetching code from the EPROM. In case of the test,

the interrupt routine commands the CPU to read the character from TERM1 and to

send it to TERM2. The comparison of the two characters is left to the user, who, by

comparing the typed in characters with the printed ones can recognize a possible fault

of TERM1. Note that the loops are not cut on the Figure in order to save space.

6.3.2 Testability Analysis

Testability analysis is executed using the results of concurrent fault simulation. The

dependency matrices of the models are omitted, since they are too large, e.g. in case

of MEMSY-I a size of 17 (# of tests) by 41 (# of components). In integrated diagnos-

tics only single fault testability measures are computed, since test generation and fault

simulation have been done according to the single fault assumption. The three most

important measures are:
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AD-DMPX

S-ARB

CMMU-MC

DUART EPROM

S-UB

TERM

CMMU

CPU

CPU-MC

IT-CONV

CMMU-SEL8

TERM

CPU-SEL

from IT-CONV

to CPU

Figure 6.4: Test for the Data Fault of Terminal #1
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MEMSY-I MEMSY-II MEMSY-III
testability [%]

pessimistic optimistic pessimistic optimistic pessimistic optimistic

detectability 32 46 26 47 27 44

isolation level 22 37 21 33 14 18

diagnosability 15 34 19 21 7 9

Table 6.6: Results of Testability Analysis
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Figure 6.5: Results of Testability Analysis

� detectability

� isolation level

� diagnosability

Table 6.6 and Figure 6.5 show the results of the analysis. The diagram is divided into

three parts according to the three systems. Within one part the pessimistic measures are

given on the left and the optimistic measures on the right. It can be seen, as expected,

that the optimistic measures are always better. The relatively poor testability measures

are due to the following:

� small number of tests

� bad quality of tests

Reasoning on the small number of tests can be found in the previous subsection. It

could be increased by: 1) increasing the number of POs by adding some POs for testa-

bility, 2) decreasing the number of nontestable components by altering their function
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MEMSY-I MEMSY-II MEMSY-III
#tests

pessimistic optimistic pessimistic optimistic pessimistic optimistic

before 17 17 18 18 17 17

after 9 11 7 8 4 5

Table 6.7: Results of Test Set Optimization
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Figure 6.6: Results of Test Set Optimization

(it is not very useful), 3) by decreasing uncertainty by de�ning SW or by using a less

pessimistic fault propagation model then PMC. Unfortunately the �ring rules of the

data
ow nodes have been generated by hand, thus generating another model just for

comparison would be a huge overhead.

The second factor that can in
uence testability is the quality of the tests. Test

quality is not a very well de�ned notion. It can be de�ned with terms of number of

components participating in a given test, number of iteration in the iterative array

model (sequentiality of a test), or by the number of faults the test can detect (a test

can detect other faults then it has been generated for). A useful experiment would

be to generate tests for the MEMSY system by an expert by hand, but at this size of

complexity it can not be performed.

Two examples for in our opinion good and bed tests are given below. The test given

in Figure 6.4 is very close to the optimal solution. On the other hand a test for the

same fault have been generated once, that started from the RESET component, went

through SRAM, VME-BUS, SCSI controller, DISC, EPROM, TERM1, MEM, TERM2.

Clearly this second test used too much components unnecessarily.

Since the above mentioned e�ects are valid for all three systems, there is no signi�cant

di�erence between the testability measures of MEMSY-I, MEMSY-II, and MEMSY-III.

The second part of the analysis aims at optimizing the test set by removing excess

tests, i.e. tests that deliver equivalent result for each fault assumption. The result of the
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exec. time [s] MEMSY-I MEMSY-II MEMSY-III

testgen 18 20 25

parsim 27 30 36

Table 6.8: Execution Time of a Single Run
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Figure 6.7: Execution Time of a Single Run

analysis is given in Table 6.7 and Figure 6.6. The structure of the Figure is the same as

in the �rst part of the analysis.

It is interesting, that the number of tests can signi�cantly be reduced by removing

excess tests. Before optimization the number of tests is roughly the same for all three

systems. Optimization yields fewer tests in the pessimistic case as in the optimistic

case. This is obvious, since the better testability measures of the optimistic case can be

guaranteed only by a slightly larger number of tests.

Another observation is, that the number of tests in the optimized test set is smaller

for the more complex systems (i.e. MEMSY-III) than for the simpler ones. This is due to

the fact, that the worse testability measures of the complex system can be accomplished

by a smaller number of tests.

6.3.3 Time Complexity of the Evaluation

In order to show the complexity of the test generation and concurrent fault simulation

task, execution time measurements were done on the AlphaServer. Table 6.8 and Fig-

ure 6.7 show the results of the measurements. The �gure is divided into three parts

according to the three evaluated systems.

Execution time is measured for the single runs of test generation and concurrent

fault simulation. The full evaluation for MEMSY-I consists of 41 test generation runs

for the 41 possible single faults, and 17 concurrent fault simulation runs for the 17 found

tests, that would give a total of 19 minutes 57 seconds.
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It can be seen on the �gure, that the evaluation of the slightly more complex models,

e.g. MEMSY-II and MEMSY-III, takes slightly more time than in case of MEMSY-I.

6.4 Contribution

In this chapter I presented the detailed analysis of three di�erent setups of MEMSY. The

aim of the analysis was to compare the testability measures of the di�erent architectures

of the system. The size of MEMSY can truly be considered as a real industrial size

problem that can be encountered during the application of a CAD tool based on the

presented framework. The evaluation of the model showed, that the execution of such

an analysis is possible even with desktop computers within acceptable time.



Chapter 7

Conclusion and Future Work

In this work we presented a data
ow modeling approach for the design of digital comput-

ing systems. The most important achievement of my work is, that a novel, systematic

methodology is given for fault modeling with data
ow networks. This method is able to

handle the functional nondeterminism of the system and modeling uncertainty as well.

Therefore, the modeling approach can be used in early phases of system design. CAD

tools using the suggested approach can support testability analysis and test design as

an integral part of the design process, since in the proposed data
ow model information

is incorporated for both the functional and the error propagation behavior of the com-

ponents. By means of a simple example we have shown the feasibility of the method. It

showed that even in this phase of system engineering test strategy design and testability

analysis can be done concurrently with the system design. An application study, i.e. the

analysis of MEMSY, showed the usability of the approach for industrial size systems.

Future work can be focused on three main �elds of theoretical research and system

implementation:

� Based on the presented modeling framework a CAD tool for dependable code-

sign is under implementation at the Department of Measurement and Information

Systems of the Technical University of Budapest. This task contains mainly im-

plementation related work: programming the still not implemented modules of the

system; �tting to the other modules and optimization existing modules. In order

to present the full functionality of the tool component and requirement library

for some selected application areas, e.g. biomedical systems, railway interlocking

systems, have to be created.

� Some planned modules need further theoretical research. That is the solution of

reliability analysis at an abstraction level, where the assignment of fault prob-

abilities is feasible. In this case the usage of stochastic processes is clearly not

avoidable. The extraction of the input model of FMEA from the results of fault

simulation is still unsolved. Although some investigations have already been done

[TCP95] the problem of scheduling the generated tests more e�ciently has to be
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solved. An interesting problem is to investigate the e�ects of the testing crite-

ria and the requested testability as well as the generated tests on the HW-SW

separation process of the system.

� Theoretical investigation is necessary on the possible automatic derivation of the

fault model. Since the type of fault model used during modeling is highly de-

pendent on the application area and its requirements, i.e. general fault-tolerant

application, safety critical application, security centered application, libraries of

components can be built for these application areas. Once the application area

and the corresponding fault model have been de�ned automatic generation of the

�ring rules should be possible for many components. It should even be possible to

generate the data
ow description from other high-level description such as Stat-

echarts or UML, that are the two most widely used modeling languages for the

formal description in embedded system design.

� Although in Chapter 4 a fully functioning PODEM based algorithm is given for test

generation, the problem has to be further investigated. First of all other automatic

logic gate-level test pattern generation algorithm has to be adapted to the data
ow

approach. A comparison of these algorithms can then be done in order to evaluate

which of the algorithms is the most e�cient. E�ciency of the algorithms can be

increased by suiting them to the needs of data
ow networks by using heuristics.

One such possible improvement can be to invent a clever mechanism to control

the selection of still unassigned inputs of the data
ow nodes in PODEM. However

the elaboration of heuristics presumes a great number of modeled and evaluated

systems.

� Last but not least considerations have to be done to use the suggested approach

for other data
ow like languages that are currently being used in automated sys-

tem design tools. One of the most promising of them is UML (Uni�ed Modeling

Language), which is an object oriented modeling language currently under stan-

dardization by ISO.
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Appendix A

Abbreviations and Symbols

A.1 Abbreviations

AG alternative graph

ALU arithmetic logic unit

ASIC application speci�c integrated circuit

ATPG automatic test pattern generation

CAD computer aided design

CC0 combinational zero controllability

CC1 combinational one controllability

CFSM codesign �nite-state machine

CMMU cache memory manager unit

CO combinational observability

CP computation of a data
ow network

CPU central processing unit

CSP constraint satisfaction problem

DF data
ow

DFG data
ow graph

DFN data
ow network

DR domain re�nement

DSP digital signal processing

EPROM electrically programmable read only memory

FIFO �rst in �rst out

FMEA failure mode and e�ect analysis

FPGA �eld programmable gate array

FS �ring sequence

FSM �nite-state machine

GSPN generalized stochastic Petri net

HW hardware

ID integrated diagnostics
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LAN local area network

LED light emitting diode

LSI large scale integration

M/C master-checker

MC Markov chain

MEMSY modular expandable multiprocessor system

MG marked graph

MTBF mean-time between failure

MTTF mean-time to �rst failure

MTTR mean-time to repair

ND not de�ned

NDFST nondeterministic �nite-state transducer

NVRAM non-volatile random access memory

NaR not a re�nement

PA process algebra

PC personal computer

PI primary input

PLD programmable logic device

PMC Preparata-Metzge-Chien

PN Petri net

PO primary output

PODEM path oriented decision making

RAM random access memory

ROM read only memory

SAN stochastic activity network

SC0 sequential zero controllability

SC1 sequential one controllability

SCSI small computer system interface

SDL speci�cation description language

SO sequential observability

SR structure re�nement

SRAM static random access memory

SW software

TA testability analysis

TCDG test conclusion dependency graph

TPG test pattern generation

UML uni�ed modeling language

VDM Vienna development method

VHDL very high-scale hardware description language

VLSI very large-scale integration

WDP watchdog processor
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A.2 Symbols

A.2.1 Data
ow Notation

c channel of a data
ow network

C set of channels of a data
ow network

cp computation of a data
ow network

CP set of computations of a data
ow network

fs �ring sequence of a data
ow network

FS set of �ring sequences of a data
ow network

i input channel of a data
ow network

I set of input channels of a data
ow network

im input mapping of a data
ow network

IM set of input mappings of a data
ow network

imn input mapping of node n

IMn set of input mappings of node n

in internal channel of a data
ow network

IN set of internal channels of a data
ow network

in input channel of node n

In set of input channels of node n

m token of a data
ow network

M token set of a data
ow network

mn token of node n

Mn token set of node n

n data
ow node of a data
ow network

N set of nodes of a data
ow network

o output channel of a data
ow network

O set of output channels of a data
ow network

om output mapping of a data
ow network

OM set of output mappings of a data
ow network

omn output mapping of node n

OMn set of output mappings of node n

on output channel of node n

On set of output channels of node n

� priority of a �ring rule

rn �ring rule of node n

Rn set of �ring rules of node n

R re�nement of a data
ow network

Rd domain re�nement of a data
ow network

Rs structure re�nement of a data
ow network

S set of states of a data
ow network
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s state of a data
ow network

s0n initial state of node n

s0 initial state of a data
ow network

Sn set of states of node n

sn state of node s

spost successor state of a �ring

spre predecessor state of a �ring

Xin input mapping of a �ring rule

Xout output mapping of a �ring rule

A.2.2 Nondeterministic Finite-State Transducer Notation

� input alphabet

� output alphabet

S set of states

s0 initial state

� state transition function

! output function

�! extended output function

A.2.3 Set and String Notation

A set

kAk cardinality of A

kAkw weighted cardinality of A

A� power set of A

A�B Cartesian product of A and B

An string from the elements of A in length n

jAnj length of string An

A? set of strings constructed from A

A.2.4 Testability Notation

C set of conclusions in integrated diagnostics

Ci a given conclusion in integrated diagnostics

f a given fault

F set of faults

f0 notation of the fault-free system

Fc set of certainly detectable faults

Fn set of not detectable faults

Fu set of uncertainly detectable faults

t a given test
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T set of tests

tr test result

tv test vector

Ti a given test in integrated diagnostics
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Appendix C

Formal Description of the Candy

Automaton

In this chapter the formal de�nition of the candy automaton is given. Similarly to Chap-

ter 2, �rst the data
ow network that denotes the error-free computation is presented,

and then the data
ow network that de�nes the erroneous operation is given. In the

de�nition of networks and subnetworks the state of channels is represented by an X

symbol in the state of the network. For the structure of the DFGs refer to Figure 2.2 in

case of the original automaton and to Figure 3.3 in case of the re�ned automaton.

C.1 candy automaton

basic operation

nodes N=fcoin in/out, select, controller, candies outg

channels C=fcoin in, change, to coin in/out, from coin in/out,

from select, select candy, to candies out, from candies out, outg

states S=f(ok,ok,ok,ok,X)g

extended operation

nodes N=fcoin in/out, select, controller, candies outg

channels C=fcoin in, change, to coin in/out, from coin in/out,

from select, select candy, to candies out, from candies out, outg

states S=f(ok,ok,ok,ok,X), (ok,ok,ok,ok,X), (ok,ok,ok,ok,X), (ok,ok,ok,ok,X),

(ok,ok,ok,ok,X), (ok,ok,ok,ok,X), (ok,ok,ok,ok,X), (ok,ok,ok,ctrl,X),

(ok,ok,ok,ok,X), (ok,ok,ok,ok,X), (ok,ok,ok,ok,X), (ok,ok,ok,stk,X),

(ok,ok,ok,ok,X), (ok,ok,ok,ok,X), (ok,ok,int,ok,X), (ok,ok,ok,ok,X),

(ok,ok,ok,ok,X), (ok,ok,ok,ok,X), (ok,ok,int,ok,X), (ok,ok,ok,ctrl,X),

(ok,ok,ok,ok,X), (ok,ok,ok,ok,X), (ok,ok,int,ok,X), (ok,ok,ok,stk,X),

(ok,ok,ok,ok,X), (ok,cont,ok,ok,X), (ok,ok,ok,ok,X), (ok,ok,ok,ok,X),
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(ok,ok,ok,ok,X), (ok,cont,ok,ok,X), (ok,ok,ok,ok,X), (ok,ok,ok,ctrl,X),

(ok,ok,ok,ok,X), (ok,cont,ok,ok,X), (ok,ok,ok,ok,X), (ok,ok,ok,stk,X),

(ok,ok,ok,ok,X), (ok,cont,ok,ok,X), (ok,ok,int,ok,X), (ok,ok,ok,ok,X),

(ok,ok,ok,ok,X), (ok,cont,ok,ok,X), (ok,ok,int,ok,X), (ok,ok,ok,ctrl,X),

(ok,ok,ok,ok,X), (ok,cont,ok,ok,X), (ok,ok,int,ok,X), (ok,ok,ok,stk,X),

(rec,ok,ok,ok,X), (ok,ok,ok,ok,X), (ok,ok,ok,ok,X), (ok,ok,ok,ok,X),

(rec,ok,ok,ok,X), (ok,ok,ok,ok,X), (ok,ok,ok,ok,X), (ok,ok,ok,ctrl,X),

(rec,ok,ok,ok,X), (ok,ok,ok,ok,X), (ok,ok,ok,ok,X), (ok,ok,ok,stk,X),

(rec,ok,ok,ok,X), (ok,ok,ok,ok,X), (ok,ok,int,ok,X), (ok,ok,ok,ok,X),

(rec,ok,ok,ok,X), (ok,ok,ok,ok,X), (ok,ok,int,ok,X), (ok,ok,ok,ctrl,X),

(rec,ok,ok,ok,X), (ok,ok,ok,ok,X), (ok,ok,int,ok,X), (ok,ok,ok,stk,X),

(rec,ok,ok,ok,X), (ok,cont,ok,ok,X), (ok,ok,ok,ok,X), (ok,ok,ok,ok,X),

(rec,ok,ok,ok,X), (ok,cont,ok,ok,X), (ok,ok,ok,ok,X), (ok,ok,ok,ctrl,X),

(rec,ok,ok,ok,X), (ok,cont,ok,ok,X), (ok,ok,ok,ok,X), (ok,ok,ok,stk,X),

(rec,ok,ok,ok,X), (ok,cont,ok,ok,X), (ok,ok,int,ok,X), (ok,ok,ok,ok,X),

(rec,ok,ok,ok,X), (ok,cont,ok,ok,X), (ok,ok,int,ok,X), (ok,ok,ok,ctrl,X),

(rec,ok,ok,ok,X), (ok,cont,ok,ok,X), (ok,ok,int,ok,X), (ok,ok,ok,stk,X)g

C.2 coin in/out

basic operation

input channels I=fcoin in, to coin in/outg

output channels O=ffrom coin in/out, changeg

states S=fokg

initial state s0=ok

�rings R=fr1,r2g

token set M=fokg

extended operation

input channels I=fcoin in, to coin in/outg

output channels O=ffrom coin in/out, changeg

states S=fok, recg

initial state s0=ok

�rings R=fr1 . . . r10g

token set M=fok, inc, dead, xg

�rings

r1=<ok;coin in=ok;ok;from coin in/out=ok;0>

r2=<ok;to coin in/out=ok;ok;change=ok;0>

r3=<ok;to coin in/out=inc;ok;change=inc;0>
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r4=<ok;to coin in/out=dead;ok;change=dead;0>

r5=<ok;to coin in/out=x;ok;change=x;0>

r6=<rec;coin in=ok;rec;from coin in/out=x;0>

r7=<rec;to coin in/out=ok;rec;change=x;0>

r8=<rec;to coin in/out=inc;rec;change=x;0>

r9=<rec;to coin in/out=dead;rec;change=dead;0>

r10=<rec;to coin in/out=x;rec;change=x;0>

C.3 select

basic operation

input channels I=fselect candyg

output channels O=ffrom selectg

states S=fokg

initial state s0=ok

�rings R=fr1g

token set M=fokg

extended operation

input channels I=fselect candyg

output channels O=ffrom selectg

states S=fok, contg

initial state s0=ok

�rings R=fr1, r2g

token set M=fok, incg

�rings

r1=<ok;select candy=ok;ok;from select=ok;0>

r2=<cont;select candy=ok;cont;from select=inc;0>

C.4 controller

basic operation

input channels I=ffrom coin in/out,from select,from candies outg

output channels O=fto coin in/out,to candies outg

states S=fokg

initial state s0=ok

�rings R=fr1,r10g
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token set M=fokg

extended operation

input channels I=ffrom coin in/out,from select,from candies outg

output channels O=fto coin in/out,to candies outg

states S=fok, intg

initial state s0=ok

�rings R=fr1 . . . r22g

token set M=fok, inc, dead, xg

�rings

r1=<ok;from coin in/out=ok,from select=ok;ok;to candies out=ok;0>

r2=<ok;from coin in/out=ok,from select=inc;ok;to candies out=inc;0>

r3=<ok;from coin in/out=ok,from select=x;ok;to candies out=x;0>

r4=<ok;from coin in/out=inc,from select=ok;ok;to candies out=inc;0>

r5=<ok;from coin in/out=inc,from select=inc;ok;to candies out=inc;0>

r6=<ok;from coin in/out=inc,from select=x;ok;to candies out=inc;0>

r7=<ok;from coin in/out=x,from select=ok;ok;to candies out=x;0>

r8=<ok;from coin in/out=x,from select=inc;ok;to candies out=inc;0>

r9=<ok;from coin in/out=x,from select=x;ok;to candies out=x;0>

r10=<ok;from candies out=ok;ok;to coin in/out=ok;0>

r11=<ok;from candies out=dead;ok;to coin in/out=dead;0>

r12=<int;from coin in/out=ok,from select=ok;int;to candies out=inc;0>

r13=<int;from coin in/out=ok,from select=inc;int;to candies out=x;0>

r14=<int;from coin in/out=ok,from select=x;int;to candies out=x;0>

r15=<int;from coin in/out=inc,from select=ok;int;to candies out=x;0>

r16=<int;from coin in/out=inc,from select=inc;int;to candies out=inc;0>

r17=<int;from coin in/out=inc,from select=x;int;to candies out=x;0>

r18=<int;from coin in/out=x,from select=ok;int;to candies out=x;0>

r19=<int;from coin in/out=x,from select=inc;int;to candies out=x;0>

r20=<int;from coin in/out=x,from select=x;int;to candies out=x;0>

r21=<int;from candies out=ok;int;to coin in/out=inc;0>

r22=<int;from candies out=dead;int;to coin in/out=dead;0>

C.5 candies out

basic operation

input channels I=fto candies outg

output channels O=ffrom candies out,outg

states S=fokg

initial state s0=ok
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�rings R=fr1g

token set M=fokg

extended operation

input channels I=fto candies outg

output channels O=ffrom candies out,outg

states S=fok, ctrl, stkg

initial state s0=ok

�rings R=fr1 . . . r9g

token set M=fok, inc, dead, xg

�rings

r1=<ok;to candies out=ok;ok;from candies out=ok,out=ok;0>

r2=<ok;to candies out=inc;ok;from candies out=ok,out=inc;0>

r3=<ok;to candies out=x;ok;from candies out=ok,out=x;0>

r4=<ctrl;to candies out=ok;ctrl;from candies out=ok,out=inc;0>

r5=<ctrl;to candies out=inc;ctrl;from candies out=ok,out=x;0>

r6=<ctrl;to candies out=x;ctrl;from candies out=ok,out=x;0>

r7=<stk;to candies out=ok;stk;from candies out=dead,out=dead;0>

r8=<stk;to candies out=inc;stk;from candies out=dead,out=dead;0>

r9=<stk;to candies out=x;stk;from candies out=dead,out=dead;0>

C.6 candies out (re�ned)

basic operation

nodes N=fhwl, mechanicsg

channels C=fto candies out, from candies out, to mechanics, outg

states S=f(ok,ok,X)g

extended operation

nodes N=fhwl, mechanicsg

channels C=fto candies out, from candies out, to mechanics, outg

states S=f(ok,ok,X), (ok,stk,X), (ctrl,ok,X), (ctrl,stk,X)g

C.7 hwl

basic operation

input channels I=fto candies outg

output channels O=fto mechanicsg

states S=fokg
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initial state s0=ok

�rings R=fr1g

token set M=fokg

extended operation

input channels I=fto candies outg

output channels O=fto mechanicsg

states S=fok, ctrlg

initial state s0=ok

�rings R=fr1 . . . r6g

token set M=fok, inc, dead, xg

�rings

r1=<ok;to candies out=ok;ok;to mechnics=ok;0>

r2=<ok;to candies out=inc;ok;to mechnics=inc;0>

r3=<ok;to candies out=x;ok;to mechnic=x;0>

r4=<ctrl;to candies out=ok;ctrl;to mechnics=inc;0>

r5=<ctrl;to candies out=inc;ctrl;to mechnics=x;0>

r6=<ctrl;to candies out=x;ctrl;to mechnics=x;0>

C.8 mechanics

basic operation

input channels I=fto meachanicsg

output channels O=ffrom candies out,outg

states S=fokg

initial state s0=ok

�rings R=fr1g

token set M=fokg

extended operation

input channels I=fto mechanicsg

output channels O=ffrom candies out,outg

states S=fok, stkg

initial state s0=ok

�rings R=fr1 . . . r9g

token set M=fok,inc,dead,xg
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�rings

r1=<ok;to mechanics=ok;ok;from candies out=ok,out=ok;0>

r2=<ok;to mechanics=inc;ok;from candies out=ok,out=inc;0>

r3=<ok;to mechanics=x;ok;from candies out=ok,out=x;0>

r4=<stk;to mechanics=ok;stk;from candies out=dead,out=dead;0>

r5=<stk;to mechanics=inc;stk;from candies out=dead,out=dead;0>

r6=<stk;to mechanics=x;stk;from candies out=dead,out=dead;0>
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Appendix D

Formal Description of MEMSY

In this chapter the formal de�nition of MEMSY and of the cpu component is given.

D.1 MEMSY-I

basic operation

token set M=f0: okg

nodes N=fAD-DMPX, CIO, CM, CMC, CMMU, CMMU-MC, CMMU-SEL8,

COUPL, CPU, CPU-MC, CPU-SEL, DISC, DUART, EPROM,

IT-CONV, ITC, LAN, MCI, MEM, NVRAM, RESET, S-ARB,

S-UB, S-VME, SCSI, SRAM, TERM, VME-ARB, WDPg

channels C=fsee Figure 6.1g

states S=fcombination of the error-free states of the nodesg

initial state s0=combinations of the error-free initial states of the nodes

�rings R=f�rings of the nodes in basic operationg

extended operation

token set M=f0: ok, 1: inc, 2: xg

nodes N=fAD-DMPX, CIO, CM, CMC, CMMU, CMMU-MC, CMMU-SEL8,

COUPL, CPU, CPU-MC, CPU-SEL, DISC, DUART, EPROM,

IT-CONV, ITC, LAN, MCI, MEM, NVRAM, RESET, S-ARB,

S-UB, S-VME, SCSI, SRAM, TERM, VME-ARB, WDPg

channels C=fsee Figure 6.1g

states S=fcombination of the states of the nodesg

initial state s0=combinations of initial states of the nodes

�rings R=f�rings of the nodesg



D-2 APPENDIX D. FORMAL DESCRIPTION OF MEMSY

D.2 CPU

basic operation

input channels I=fd in, dr coin in, c in, cr in, it, rstg

output channels O=fd 1, rw 1, cfetch 1, d 2, rw 2, cfetch 2g

states S=f0: cpu ok data ok end fetch

1: cpu ok data ok end read

2: cpu ok data ok end write

3: cpu ok data ok end read(ex it)g

initial state s0=cpu ok data ok end fetch

�rings R=fr0, r1, r4, r5, r6, r7, r10, r11, r14, r17, r20, r21, r24,

r25, r26, r29, r32, r33, r34, r35, r38, r39, r40g

extended operation

input channels I=fd in, dr coin in, c in, cr in, it, rstg

output channels O=fd 1, rw 1, cfetch 1, d 2, rw 2, cfetch 2g

states S=f0: cpu ok data ok end fetch

1: cpu ok data ok end read

2: cpu ok data ok end write

3: cpu ok data ok end read(ex it)

4: cpu ok data faulty end fetch

5: cpu ok data faulty end read

6: cpu ok data faulty end write

7: cpu faulty data ok end fetch

8: cpu faulty data ok end read

9: cpu faulty data ok end write

10: cpu faulty data ok end read(ex it)

11: cpu faulty data faulty end fetch

12: cpu faulty data faulty end read

13: cpu faulty data faulty end write

14: cpu ok data poss.faulty end fetch

15: cpu ok data poss.faulty end read

16: cpu ok data poss.faulty end write

17: cpu faulty data poss.faulty end fetch

18: cpu faulty data poss.faulty end read

19: cpu faulty data poss.faulty end writeg

initial state s0=cpu ok data ok end fetch

�rings R=fr0 . . . r221g
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�rings

r0=<0;rst=0,c in=0,cr in=0;0;cfetch 1=0,cfetch 2=0;6>

r1=<0;rst=0,c in=0;0;cfetch 1=0,cfetch 2=0;5>

r2=<0;rst=0,c in=1;0;cfetch 1=0,cfetch 2=0;5>

r3=<0;rst=0,c in=2;0;cfetch 1=0,cfetch 2=0;5>

r4=<0;rst=0,it=0;0;cfetch 1=0,cfetch 2=0;5>

r5=<0;rst=0;0;cfetch 1=0,cfetch 2=0;4>

r6=<0;cr in=0,c in=0;3;rw 1=0,rw 2=0;3>

r7=<0;it=0,c in=0;3;rw 1=0,rw 2=0;2>

r8=<0;it=0,c in=1;3;rw 1=0,rw 2=0;2>

r9=<0;it=0,c in=2;3;rw 1=0,rw 2=0;2>

r10=<0;it=0;3;rw 1=0,rw 2=0;1>

r11=<0;c in=0;0;cfetch 1=0,cfetch 2=0;0>

r12=<0;c in=1;4;cfetch 1=0,cfetch 2=0;0>

r13=<0;c in=2;14;cfetch 1=0,cfetch 2=0;0>

r14=<0;c in=0;1;rw 1=0,rw 2=0;0>

r15=<0;c in=1;5;rw 1=0,rw 2=0;0>

r16=<0;c in=2;15;rw 1=0,rw 2=0;0>

r17=<0;c in=0;2;d 1=0,d 2=0,rw 1=0,rw 2=0;0>

r18=<0;c in=1;6;d 1=2,d 2=2,rw 1=0,rw 2=0;0>

r19=<0;c in=2;16;d 1=2,d 2=2,rw 1=0,rw 2=0;0>

r20=<1;rst=0,d in=0,dr in=0;0;cfetch 1=0,cfetch 2=0;4>

r21=<1;rst=0,d in=0;0;cfetch 1=0,cfetch 2=0;3>

r22=<1;rst=0,d in=1;0;cfetch 1=0,cfetch 2=0;3>

r23=<1;rst=0,d in=2;0;cfetch 1=0,cfetch 2=0;3>

r24=<1;rst=0;0;cfetch 1=0,cfetch 2=0;2>

r25=<1;dr in=0,d in=0;3;rw 1=0,rw 2=0;1>

r26=<1;d in=0;0;cfetch 1=0,cfetch 2=0;0>

r27=<1;d in=1;4;cfetch 1=0,cfetch 2=0;0>

r28=<1;d in=2;14;cfetch 1=0,cfetch 2=0;0>

r29=<1;d in=0;2;d 1=0,d 2=0,rw 1=0,rw 2=0;0>

r30=<1;d in=1;6;d 1=2,d 2=2,rw 1=0,rw 2=0;0>

r31=<1;d in=2;16;d 1=2,d 2=2,rw 1=0,rw 2=0;0>

r32=<2;rst=0;0;cfetch 1=0,cfetch 2=0;1>

r33=<2;;0;cfetch 1=0,cfetch 2=0;0>

r34=<3;rst=0,d in=0,dr in=0;0;cfetch 1=0,cfetch 2=0;3>

r35=<3;rst=0,d in=0;0;cfetch 1=0,cfetch 2=0;2>

r36=<3;rst=0,d in=1;0;cfetch 1=0,cfetch 2=0;2>

r37=<3;rst=0,d in=2;0;cfetch 1=0,cfetch 2=0;2>

r38=<3;rst=0;0;cfetch 1=0,cfetch 2=0;2>

r39=<3;dr in=0,d in=0;3;rw 1=0,rw 2=0;1>

r40=<3;d in=0;0;cfetch 1=0,cfetch 2=0;0>

r41=<3;d in=1;4;cfetch 1=0,cfetch 2=0;0>

r42=<3;d in=2;14;cfetch 1=0,cfetch 2=0;0>

r43=<4;rst=0,c in=0,cr in=0;0;cfetch 1=0,cfetch 2=0;6>
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r44=<4;rst=0,c in=0;0;cfetch 1=0,cfetch 2=0;5>

r45=<4;rst=0,c in=1;0;cfetch 1=0,cfetch 2=0;5>

r46=<4;rst=0,c in=2;0;cfetch 1=0,cfetch 2=0;5>

r47=<4;rst=0,it=0;0;cfetch 1=0,cfetch 2=0;5>

r48=<4;rst=0;0;cfetch 1=0,cfetch 2=0;4>

r49=<4;cr in=0,c in=0;3;rw 1=0,rw 2=0;3>

r50=<4;it=0,c in=0;3;rw 1=0,rw 2=0;2>

r51=<4;it=0,c in=1;3;rw 1=0,rw 2=0;2>

r52=<4;it=0,c in=2;3;rw 1=0,rw 2=0;2>

r53=<4;it=0;3;rw 1=0,rw 2=0;1>

r54=<4;c in=0;4;cfetch 1=0,cfetch 2=0;0>

r55=<4;c in=1;4;cfetch 1=0,cfetch 2=0;0>

r56=<4;c in=2;4;cfetch 1=0,cfetch 2=0;0>

r57=<4;c in=0;5;rw 1=0,rw 2=0;0>

r58=<4;c in=1;5;rw 1=0,rw 2=0;0>

r59=<4;c in=2;5;rw 1=0,rw 2=0;0>

r60=<4;c in=0;6;d 1=2,d 2=2,rw 1=0,rw 2=0;0>

r61=<4;c in=1;6;d 1=2,d 2=2,rw 1=0,rw 2=0;0>

r62=<4;c in=2;6;d 1=2,d 2=2,rw 1=0,rw 2=0;0>

r63=<5;rst=0,d in=0,dr in=0;0;cfetch 1=0,cfetch 2=0;4>

r64=<5;rst=0,d in=0;0;cfetch 1=0,cfetch 2=0;3>

r65=<5;rst=0,d in=1;0;cfetch 1=0,cfetch 2=0;3>

r66=<5;rst=0,d in=2;0;cfetch 1=0,cfetch 2=0;3>

r67=<5;rst=0;0;cfetch 1=0,cfetch 2=0;2>

r68=<5;dr in=0,d in=0;3;rw 1=0,rw 2=0;1>

r69=<5;d in=0;4;cfetch 1=0,cfetch 2=0;0>

r70=<5;d in=1;4;cfetch 1=0,cfetch 2=0;0>

r71=<5;d in=2;4;cfetch 1=0,cfetch 2=0;0>

r72=<5;d in=0;6;d 1=2,d 2=2,rw 1=0,rw 2=0;0>

r73=<5;d in=1;6;d 1=2,d 2=2,rw 1=0,rw 2=0;0>

r74=<5;d in=2;6;d 1=2,d 2=2,rw 1=0,rw 2=0;0>

r75=<6;rst=0;0;cfetch 1=0,cfetch 2=0;1>

r76=<6;;4;cfetch 1=0,cfetch 2=0;0>

r77=<14;rst=0,c in=0,cr in=0;0;cfetch 1=0,cfetch 2=0;6>

r78=<14;rst=0,c in=0;0;cfetch 1=0,cfetch 2=0;5>

r79=<14;rst=0,c in=1;0;cfetch 1=0,cfetch 2=0;5>

r80=<14;rst=0,c in=2;0;cfetch 1=0,cfetch 2=0;5>

r81=<14;rst=0,it=0;0;cfetch 1=0,cfetch 2=0;5>

r82=<14;rst=0;0;cfetch 1=0,cfetch 2=0;4>

r83=<14;cr in=0,c in=0;3;rw 1=0,rw 2=0;3>

r84=<14;it=0,c in=0;3;rw 1=0,rw 2=0;2>

r85=<14;it=0,c in=1;3;rw 1=0,rw 2=0;2>

r86=<14;it=0,c in=2;3;rw 1=0,rw 2=0;2>

r87=<14;it=0;3;rw 1=0,rw 2=0;1>

r88=<14;c in=0;14;cfetch 1=0,cfetch 2=0;0>

r89=<14;c in=1;4;cfetch 1=0,cfetch 2=0;0>
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r90=<14;c in=2;14;cfetch 1=0,cfetch 2=0;0>

r91=<14;c in=0;15;rw 1=0,rw 2=0;0>

r92=<14;c in=1;5;rw 1=0,rw 2=0;0>

r93=<14;c in=2;15;rw 1=0,rw 2=0;0>

r94=<14;c in=0;16;d 1=0,d 2=0,rw 1=0,rw 2=0;0>

r95=<14;c in=1;6;d 1=2,d 2=2,rw 1=0,rw 2=0;0>

r96=<14;c in=2;16;d 1=2,d 2=2,rw 1=0,rw 2=0;0>

r97=<15;rst=0,d in=0,dr in=0;0;cfetch 1=0,cfetch 2=0;4>

r98=<15;rst=0,d in=0;0;cfetch 1=0,cfetch 2=0;3>

r99=<15;rst=0,d in=1;0;cfetch 1=0,cfetch 2=0;3>

r100=<15;rst=0,d in=2;0;cfetch 1=0,cfetch 2=0;3>

r101=<15;rst=0;0;cfetch 1=0,cfetch 2=0;2>

r102=<15;dr in=0,d in=0;3;rw 1=0,rw 2=0;1>

r103=<15;d in=0;14;cfetch 1=0,cfetch 2=0;0>

r104=<15;d in=1;4;cfetch 1=0,cfetch 2=0;0>

r105=<15;d in=2;14;cfetch 1=0,cfetch 2=0;0>

r106=<15;d in=0;16;d 1=0,d 2=0,rw 1=0,rw 2=0;0>

r107=<15;d in=1;6;d 1=2,d 2=2,rw 1=0,rw 2=0;0>

r108=<15;d in=2;16;d 1=2,d 2=2,rw 1=0,rw 2=0;0>

r109=<16;rst=0;0;cfetch 1=0,cfetch 2=0;1>

r110=<16;;0;cfetch 1=0,cfetch 2=0;0>

r111=<7;rst=0,c in=0,cr in=0;7;cfetch 1=0,cfetch 2=0;6>

r112=<7;rst=0,c in=0;7;cfetch 1=0,cfetch 2=0;5>

r113=<7;rst=0,c in=1;7;cfetch 1=0,cfetch 2=0;5>

r114=<7;rst=0,c in=2;7;cfetch 1=0,cfetch 2=0;5>

r115=<7;rst=0,it=0;7;cfetch 1=0,cfetch 2=0;5>

r116=<7;rst=0;7;cfetch 1=0,cfetch 2=0;4>

r117=<7;cr in=0,c in=0;10;rw 1=0,rw 2=0;3>

r118=<7;it=0,c in=0;10;rw 1=0,rw 2=0;2>

r119=<7;it=0,c in=1;10;rw 1=0,rw 2=0;2>

r120=<7;it=0,c in=2;10;rw 1=0,rw 2=0;2>

r121=<7;it=0;10;rw 1=0,rw 2=0;1>

r122=<7;c in=0;7;cfetch 1=0,cfetch 2=0;0>

r123=<7;c in=1;11;cfetch 1=0,cfetch 2=0;0>

r124=<7;c in=2;17;cfetch 1=0,cfetch 2=0;0>

r125=<7;c in=0;8;rw 1=0,rw 2=0;0>

r126=<7;c in=1;12;rw 1=0,rw 2=0;0>

r127=<7;c in=2;18;rw 1=0,rw 2=0;0>

r128=<7;c in=0;9;d 1=1,d 2=1,rw 1=0,rw 2=0;0>

r129=<7;c in=1;13;d 1=2,d 2=2,rw 1=0,rw 2=0;0>

r130=<7;c in=2;19;d 1=2,d 2=2,rw 1=0,rw 2=0;0>

r131=<8;rst=0,d in=0,dr in=0;7;cfetch 1=0,cfetch 2=0;4>

r132=<8;rst=0,d in=0;7;cfetch 1=0,cfetch 2=0;3>

r133=<8;rst=0,d in=1;7;cfetch 1=0,cfetch 2=0;3>

r134=<8;rst=0,d in=2;7;cfetch 1=0,cfetch 2=0;3>

r135=<8;rst=0;7;cfetch 1=0,cfetch 2=0;2>
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r136=<8;dr in=0,d in=0;10;rw 1=0,rw 2=0;1>

r137=<8;d in=0;7;cfetch 1=0,cfetch 2=0;0>

r138=<8;d in=1;11;cfetch 1=0,cfetch 2=0;0>

r139=<8;d in=2;17;cfetch 1=0,cfetch 2=0;0>

r140=<8;d in=0;9;d 1=1,d 2=1,rw 1=0,rw 2=0;0>

r141=<8;d in=1;13;d 1=2,d 2=2,rw 1=0,rw 2=0;0>

r142=<8;d in=2;19;d 1=2,d 2=2,rw 1=0,rw 2=0;0>

r143=<9;rst=0;7;cfetch 1=0,cfetch 2=0;1>

r144=<9;;7;cfetch 1=0,cfetch 2=0;0>

r145=<10;rst=0,d in=0,dr in=0;7;cfetch 1=0,cfetch 2=0;3>

r146=<10;rst=0,d in=0;7;cfetch 1=0,cfetch 2=0;2>

r147=<10;rst=0,d in=1;7;cfetch 1=0,cfetch 2=0;2>

r148=<10;rst=0,d in=2;7;cfetch 1=0,cfetch 2=0;2>

r149=<10;rst=0;7;cfetch 1=0,cfetch 2=0;2>

r150=<10;dr in=0,d in=0;10;rw 1=0,rw 2=0;1>

r151=<10;d in=0;7;cfetch 1=0,cfetch 2=0;0>

r152=<10;d in=1;11;cfetch 1=0,cfetch 2=0;0>

r153=<10;d in=2;17;cfetch 1=0,cfetch 2=0;0>

r154=<11;rst=0,c in=0,cr in=0;7;cfetch 1=0,cfetch 2=0;6>

r155=<11;rst=0,c in=0;7;cfetch 1=0,cfetch 2=0;5>

r156=<11;rst=0,c in=1;7;cfetch 1=0,cfetch 2=0;5>

r157=<11;rst=0,c in=2;7;cfetch 1=0,cfetch 2=0;5>

r158=<11;rst=0,it=0;7;cfetch 1=0,cfetch 2=0;5>

r159=<11;rst=0;7;cfetch 1=0,cfetch 2=0;4>

r160=<11;cr in=0,c in=0;10;rw 1=0,rw 2=0;3>

r161=<11;it=0,c in=0;10;rw 1=0,rw 2=0;2>

r162=<11;it=0,c in=1;10;rw 1=0,rw 2=0;2>

r163=<11;it=0,c in=2;10;rw 1=0,rw 2=0;2>

r164=<11;it=0;10;rw 1=0,rw 2=0;1>

r165=<11;c in=0;11;cfetch 1=0,cfetch 2=0;0>

r166=<11;c in=1;11;cfetch 1=0,cfetch 2=0;0>

r167=<11;c in=2;11;cfetch 1=0,cfetch 2=0;0>

r168=<11;c in=0;12;rw 1=0,rw 2=0;0>

r169=<11;c in=1;12;rw 1=0,rw 2=0;0>

r170=<11;c in=2;12;rw 1=0,rw 2=0;0>

r171=<11;c in=0;13;d 1=2,d 2=2,rw 1=0,rw 2=0;0>

r172=<11;c in=1;13;d 1=2,d 2=2,rw 1=0,rw 2=0;0>

r173=<11;c in=2;13;d 1=2,d 2=2,rw 1=0,rw 2=0;0>

r174=<12;rst=0,d in=0,dr in=0;7;cfetch 1=0,cfetch 2=0;4>

r175=<12;rst=0,d in=0;7;cfetch 1=0,cfetch 2=0;3>

r176=<12;rst=0,d in=1;7;cfetch 1=0,cfetch 2=0;3>

r177=<12;rst=0,d in=2;7;cfetch 1=0,cfetch 2=0;3>

r178=<12;rst=0;7;cfetch 1=0,cfetch 2=0;2>

r179=<12;dr in=0,d in=0;10;rw 1=0,rw 2=0;1>

r180=<12;d in=0;11;cfetch 1=0,cfetch 2=0;0>

r181=<12;d in=1;11;cfetch 1=0,cfetch 2=0;0>
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r182=<12;d in=2;11;cfetch 1=0,cfetch 2=0;0>

r183=<12;d in=0;13;d 1=2,d 2=2,rw 1=0,rw 2=0;0>

r184=<12;d in=1;13;d 1=2,d 2=2,rw 1=0,rw 2=0;0>

r185=<12;d in=2;13;d 1=2,d 2=2,rw 1=0,rw 2=0;0>

r186=<13;rst=0;7;cfetch 1=0,cfetch 2=0;1>

r187=<13;;11;cfetch 1=0,cfetch 2=0>

r188=<17;rst=0,c in=0,cr in=0;7;cfetch 1=0,cfetch 2=0;6>

r189=<17;rst=0,c in=0;7;cfetch 1=0,cfetch 2=0;5>

r190=<17;rst=0,c in=1;7;cfetch 1=0,cfetch 2=0;5>

r191=<17;rst=0,c in=2;7;cfetch 1=0,cfetch 2=0;5>

r192=<17;rst=0,it=0;7;cfetch 1=0,cfetch 2=0;5>

r193=<17;rst=0;7;cfetch 1=0,cfetch 2=0;4>

r194=<17;cr in=0,c in=0;10;rw 1=0,rw 2=0;3>

r195=<17;it=0,c in=0;10;rw 1=0,rw 2=0;2>

r196=<17;it=0,c in=1;10;rw 1=0,rw 2=0;2>

r197=<17;it=0,c in=2;10;rw 1=0,rw 2=0;2>

r198=<17;it=0;10;rw 1=0,rw 2=0;1>

r199=<17;c in=0;17;cfetch 1=0,cfetch 2=0;0>

r200=<17;c in=1;11;cfetch 1=0,cfetch 2=0;0>

r201=<17;c in=2;17;cfetch 1=0,cfetch 2=0;0>

r202=<17;c in=0;18;rw 1=0,rw 2=0;0>

r203=<17;c in=1;12;rw 1=0,rw 2=0;0>

r204=<17;c in=2;18;rw 1=0,rw 2=0;0>

r205=<17;c in=0;19;d 1=1,d 2=1,rw 1=0,rw 2=0;0>

r206=<17;c in=1;13;d 1=2,d 2=2,rw 1=0,rw 2=0;0>

r207=<17;c in=2;19;d 1=2,d 2=2,rw 1=0,rw 2=0;0>

r208=<18;rst=0,d in=0,dr in=0;7;cfetch 1=0,cfetch 2=0;4>

r209=<18;rst=0,d in=0;7;cfetch 1=0,cfetch 2=0;3>

r210=<18;rst=0,d in=1;7;cfetch 1=0,cfetch 2=0;3>

r211=<18;rst=0,d in=2;7;cfetch 1=0,cfetch 2=0;3>

r212=<18;rst=0;7;cfetch 1=0,cfetch 2=0;2>

r213=<18;dr in=0,d in=0;10;rw 1=0,rw 2=0;1>

r214=<18;d in=0;17;cfetch 1=0,cfetch 2=0;0>

r215=<18;d in=1;11;cfetch 1=0,cfetch 2=0;0>

r216=<18;d in=2;17;cfetch 1=0,cfetch 2=0;0>

r217=<18;d in=0;19;d 1=1,d 2=1,rw 1=0,rw 2=0;0>

r218=<18;d in=1;13;d 1=2,d 2=2,rw 1=0,rw 2=0;0>

r219=<18;d in=2;19;d 1=2,d 2=2,rw 1=0,rw 2=0;0>

r220=<19;rst=0;7;cfetch 1=0,cfetch 2=0;1>

r221=<19;;7;cfetch 1=0,cfetch 2=0;0>
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