
Dependability Analysis in HW-SW Codesign1

Gy. Csert�an A. Pataricza E. Sel�enyi

Dept. of Measurement and Instrument Eng.

Technical University of Budapest

H-1521 Budapest, M}uegyetem rkp. 9, Hungary

e-mail: csertan, pataric, selenyi@mmt.bme.hu

Abstract
The increasing complexity of todays computing sys-

tems necessitates new design methodologies. One
of the most promising methods is hardware-software
codesign, that supports uni�ed hardware-software mod-
eling at di�erent levels of abstraction, and hardware-
software synthesis. As applications include even crit-
ical applications, dependability becomes to an impor-
tant design issue.

A novel approach for the underlying modeling in
hardware-software codesign is presented in this paper.
The basic idea of this new method is the extension of
the descriptions of the functional elements with the
models of fault e�ects and error propagation at each
level of the hardware-software codesign hierarchy.

From the extended system model various depend-
ability measures can be extracted. This paper concerns
test generation, solved by a generalized form of the
well-known logic gate level test generation algorithms
and extraction of the input model of integrated diag-
nostics, allowing testability and diagnosability analysis
of the system.

Keywords: diagnostic design, integrated diagnos-
tics, testability, test generation, dataow, HW-SW
codesign

1 Introduction
The advent of low-cost implementation technolo-

gies of application speci�c circuits opens new horizons
for custom-tailored solutions. The availability of low-
cost, but highly complex o�-the-shell programmable
components (PLDs) and ASIC technologies allows for
the use of such a background even for small enter-
prises, and not only for the market leaders. Unfor-
tunately the complexity o�ered by this technologies
can not be dominated by traditional design methods
any more. Recent e�orts aim at solving this prob-
lem and reducing the cost and time of the design task
by providing new design methodologies and develop-
ing integrated environments for system engineering.
These o�er various tools for the computer architects

1This research is part of the EC Research Project
#CP93:9624 FUTEG (FUnctional TEst Generation and diag-
nostics) with additional support from: Hungarian-German Joint
Scienti�c Research Project #70 and OTKA T-3394 (Hungarian
NSF)

and circuit designers based on a homogeneous tool-
box and common engineering database for the whole
design process. An important characteristic of such
tools is that activities performed earlier only after the
�nal engineering design are pushed forward into an
early design phase, thus allowing a radical shorten-
ing of the design-feedback loop. Practical experiences
show a 1:20 reduction in design time, while the result-
ing hardware overhead due to the automated design is
as low as 40%. Moreover the use of automated design
technologies radically improves the product's design
quality. One such new design approach is hardware-
software codesign (Figure 1), that denotes "the joint
speci�cation, design, and synthesis of mixed HW-SW
systems" [4].

A main insu�ciency of this tools (like Ptolemy [8],
COSMOS, SpecSyn) originates in the lack of an in-
tegrated support of dependability analysis. This be-
comes crucial in safety related applications, like pro-
cess control and automation. The avoidance of costly
re-design cycles needs the pushing of diagnostic de-
sign (test generation, testability analysis), into early
phases of system design as well. In [11] a method is
presented for testability analysis as part of integrated
diagnostics in early design phases, but the problem of
generating the input model of this method and design-
ing of the test set remain still unsolved.

The aim of our work is the development of a tool-
box for model-based diagnostics and dependability
evaluation in the form of an extension of the exist-
ing functional design tools. The basic models and
technologies developed are fully coherent with those
used in the original tools in order to keep the integrity
of the design environment and avoiding unnecessary
model transformations.

In this paper a novel approach is presented, that
uses the dataow notation as the modeling method-
ology of HW-SW codesign. Using this approach the
behavior of the functional units of digital computing
systems can be hierarchically described and aspects of
faults, their e�ects, and error propagation can be han-
dled during the design process. As it is shown in [6]
and in this work, the following major problems can be
solved concurrently with system design:

� fault simulation
� test generation, including generation of fail-safe

specification

HW

HDL model

not separated, uninterpreted modeling

data & control functions are

HW-SW separation

data & control functions are

modeling of data functions is uninterpreted

separated, uninterpreted modeling

both data & control functions

de
cr

ea
si

ng
 u

nc
er

ta
in

ty

Step1:

Step2:

Step3:

SW

interpreted modeling of

DF (like) language

uninterpreted modeling
step1 and step2

interpreted modeling of control functions
interpreted modeling

step3 and step4

Step4:

SW synthesis silicon/PLD synthesis

(iterative steps of model refinement

executable specification
input:

output:

(set of interactive modules)

and evaluation)

abstract architecture
(set of communicating processors)

DFN -> DFN’ DFN -> HDL

HDL: hardware description language
DFN: dataflow notation

codesign process

Figure 1: HW-SW codesign process

tests
� estimation of optimal diagnostic strategies
� testability analysis for both built-in and mainte-
nance tests

� failure modes and e�ects analysis (FMEA), risk
analysis

The paper is organized as follows: Section 2 intro-
duces the modeling approach, and presents a simple
system and its model as example. In Section 3 a rep-
resentative of the family of test pattern generation al-
gorithms is presented, and a test is generated for the
example. Section 4 deals with the extraction of the
integrated diagnostics model illustrated by some re-
sults of the analysis of the example. Finally Section 5
contains concluding remarks and a short overview of
the future work.

2 The Modeling Approach
Since the application area of HW-SW codesign is

very broad, no general solution can be found for all
problems. Usually a vertical slice is taken handling
a partial problem in depth and solution is given for
that particular aspect. We focus our main attention
on the design of digital computing and control sys-
tems, where dependability is of primary concern. In
this case the system is modeled at the highest level
of abstraction of the functional design process usually
by dataow models [10, 3]. Only the ow of data and
the processing-related delay times are modeled in the
form of token ows without any description of the indi-
vidual data transformation in the components (Step 1
and Step 2 uninterpreted modeling in Figure 1). This
phase aims primarily at performance analysis and op-
timization usually supported by formal analysis meth-
ods, like analysis after an automatic translation into
timed Petri nets.

More and more structural and functional details are
incorporated through stepwise re�nement into this ini-
tial model thus de�ning increasingly exactly the sys-
tem's structure and the data processing functions of its
components. (Step 2 mixed uninterpreted-interpreted
modeling in Figure 1). After the re�nement uncer-
tainty within the model decreases and analysis results
become more exact.

Finally, when all component functions become fully
speci�ed (Step 4 interpreted modeling in Figure 1),
separate automatic or interactive hardware and soft-
ware synthesis processes can be started in parallel.

Our approach is based on the idea of modeling the
fault e�ects and their propagation similarly to the ow
of data in the functional model. In uninterpreted mod-
eling the tokens representing the data can be marked
either as correct or as faulty. A set of error propa-
gation paths can be estimated by tracing their ow
from the fault site in the network. As uninterpreted
modeling does not handle data dependencies, at the
highest level of abstraction diagnostic uncertainty has
to be introduced in order to express conditional error
propagation. This way the simulation and test gener-
ation algorithm delivers a superset of propagated fault
e�ects in the system. In the model all potential conse-
quences of a fault are incorporated. In the subsequent
steps of model re�nement this global overview of the
system e�ectively supports test generation procedures
by radically restricting the search space to the solu-
tions of those from the coarse model.

Using a multi-valued logic a more detailed fault
model and a more precise description of the reactions
of functional units to erroneous input values can be
de�ned. Therefore a global overview of the system
testability and diagnostics can be estimated. As ex-
ample, the tokens and component fault states can be

qualitatively grouped (colored) according to the sever-
ity of the fault e�ects into categories like:

� catastrophic (causes a damage in a component)
� fatal (blocking the further operation, e.g. an un-
detected wrong opcode input of a CPU-like ele-
ment)

� incorrect (may invoke only error propagation, like
wrong input data to be processed by the CPU)

In such a way not only invalidation relations and po-
tential test paths can be estimated, but a fail-safe test
process can be designed as well by incorporating the
inhibition of the propagation of catastrophic errors
into the goals of the test generation algorithm.

It should be pointed out, that the use of other guid-
ing attributes in this user-de�ned colorings of the to-
kens and propagation rules o�ers full freedom for the
analysis of di�erent user requirements.

By adding fault occurrence, fault latency and de-
tection probabilities the model can serve as a starting
for a more detailed dependability analysis.

Moreover a more detailed description allows to han-
dle uncertainty: at a higher level the unknown be-
havior of a component is identi�ed by only one color.
Later this color can be split into many shades, repre-
senting the behavior of the component in more details,
without modifying the structure of the component.

Later, when introducing data dependencies at the
mixed and interpreted models costly heuristic or struc-
tural test generation algorithms must be invoked for
the �nal decision. However the high-level depend-
ability analysis provides not only an inexpensive way
for comparative analysis of alternative constructs, but
serves as a tool for test strategy design and can control
the used heuristics. Remember, that the reduction of
uncertainty during successive model re�nement mono-
tonically restricts the solution space.

2.1 The Dataow Notation
The dataow notation is well-suitable for concep-

tual modeling of computing systems in the early design
phases [3], for early validation of computing systems
[2], for performance evaluation, if extended with the
notion of time [5], and for being the modeling base of
HW-SW codesign [4]. In this work the asynchronous
dataow notation, introduced in [7], is used.

The proposed notation meets the requirements for
the speci�cation language in HW-SW codesign:

� Since dataow can express both large grain and
�ne grain parallelism, homogeneous modeling in
all phases of the design process is possible.

� Concurrency can be easily expressed in terms of
dataow.

� Hierarchical modeling is supported.
� Communication within dataow networks is
straightforward.

� Synchronization of communicating units is done
by waiting for data from another unit.

� Performance evaluation of dataow models is
solved, the theoretical background is Petri nets.

� Scalability of the dataow notation allows the
simple description of massively parallel comput-
ing.

A dataow network N is a set of nodes PN , which
execute concurrently and exchange data over point-to-
point communication channels CN . The dataow node
represents the functional elements of the system and
describes their signal propagation behavior by a sim-
ple relation between input and output, eventually de-
pending on the previous state of the node. The use of
relations instead of input-output functions allows the
modeling of non-deterministic behavior. For instance
in case of diagnostics this provides a proper mean to
express diagnostic uncertainty. The channels of the
dataow network symbolize the interaction between
the functional elements of the system. Internal chan-
nels link two nodes. Input (output) channels connect
a single node to the outside world representing the pri-
mary inputs (outputs) of the system. Communication
events occur when data items (subsequently called to-
kens) are inserted into an input channel (input event
describing the arrival of some data to the primary in-
puts) or data items are removed from an output chan-
nel (output event denoting the appearance of results
on a primary output of the system).

The functional behavior of a node p is de�ned by
the set of �ring rules Rp over the input domain and
over Sp, the set of possible states of the node. A node
is ready to execute as soon as the data required by
one of its �ring rules are available and the node is in
a proper state. The meaning of �ring rule f 2 Rp,
denoted by f = (s;Xin; s

0; Xout) is that if the node p
is in state s 2 S, each of the input channels i 2 Ip
holds at least Xin(i) data items, then �ring rule f
is potentially selected for execution. The execution
of �ring rule f removes Xin(i) data items from each
input channel i 2 Ip and outputs Xout(j) data items
on each output channel j 2 Op, while the node changes
its state from s to s0.

2.2 An example
Due to space limitation the selected example is kept

very simple and can not even introduce the full mod-
eling power of the presented approach. The system is
an automaton that delivers di�erent candies.

According to the proposed approach, the model-
ing is uninterpreted and for more accurate description
of the complex functional units a multi-valued fault
model is used. This fault model has to express uncer-
tainties originating in the neglected data dependen-
cies. According to the black-box modeling approach
component faults are identi�ed by the rough, and for
the sake of the compactness of the example, simpli�ed
classi�cation of the results they deliver:
� ok colored token denotes that the component de-
livered correct computational result.

� inc token denotes that the component delivered
incorrect result.

� dead token is sent, if the component, due to a
fatal fault, does not deliver results at all.

� x message is used to express uncertainty. x is sent
if the result, depending on the input and on the
implementation of the component, can be either
correct or incorrect.

An adder component, that receives fault free inputs
is considered to enlighten the meaning of the di�erent

0

0

0

0

0

0

0

0

0

select

f8=(inc; to_candies_out=x; inc; ok->from_candies_out, x->out)

f2=(ok ; to_candies_out=inc; ok ; ok->from_candies_out, inc->out)

f4=(ok ; to_candies_out=x; ok ; ok->from_candies_out, x->out)
f3=(ok ; to_candies_out=dead; ok ; ok->from_candies_out, dead->out)

f5=(inc; to_candies_out=ok; inc; ok->from_candies_out, inc->out)
f6=(inc; to_candies_out=inc; inc; ok->from_candies_out, x->out)

coin in/out

f9=(dead; to_candies_out=ok; dead; dead->from_candies_out, dead->out)
f10=(dead; to_candies_out=inc; dead; dead->from_candies_out, dead->out)
f11=(dead; to_candies_out=dead; dead; dead->from_candies_out, dead->out)

f7=(inc; to_candies_out=dead; inc; dead->from_candies_out, dead->out)

candies out

controller

f1=(ok ; to_candies_out=ok; ok ; ok->from_candies_out, ok->out)
P
C

N

N

CANDY AUTOMATON:
={coin_in/out, select, controller, candies_out}
={coin_in, change, to_coin_in/out,

from_coin_in/out, from_select
select_candy, to_candies_out,
from_candies_out, out}

CANDIES OUT:

R={f1 ... f12}

I={to_candies_out}
O={from_candies_out, out}
S={ok , inc, dead}

f12=(dead; to_candies_out=x; dead; dead->from_candies_out, dead->out)

to_coin_in/out

from_coin_in/out

coin_in

change

select_candyfrom_select

to_candies_out from_candies_out

out

Figure 2: Data ow model of the candy automata

tokens. If the adder is fault free, an ok token is sent.
If a faulty adder adds every time 2 to the result of
the addition, an inc token is sent. If the 0 bit of the
adder is stuck-at-0 an x token is sent, since depending
on the values of the input the result can be either
correct (8+2 is 10 in both the fault free and in the
faulty case) or incorrect (8+1 is 9 in fault free and 8
in the faulty case). If the adder is implemented by
an independent hardware component and the power
of the component is broken a dead token will be sent.
What can be expressed by the use of dead tokens? The
answer gives an example for token grouping according
to severity: in a responsive real-time application it is
very important to have results within a de�ned time
limit. If a component does not deliver any result, it
can be considered as a severe fault, while delivering
incorrect result is less severe. On the other hand, in
a safety critical application such a component can be
detected by a watchdog, but an incorrect result can
lead to system crash.

The dataow graph of the system and the formal
de�nition of one of its components are shown in Fig-
ure 2. The components are assumed not having built-
in fault detection capabilities, and the evaluation of
the model is restricted to the case of single internal
faults. The system consists of four parts:
coin in/out sends as �rst step of its operation the

calculated sum of coins inserted by the user to the
controller. The change determined by the con-
troller is returned to the user in the second step.
Malfunctions of the component are inc (wrong
recognition of the value of a coin) and dead (a
coin is stuck).

select sends the identi�er of the candy selected by
the client to the controller. We assume, that this

component can not be dead, but it may deliver
incorrect results (keyboard fault).

controller issues an order to the candies out compo-
nent to deliver a candy according to the client's
selection and the sum of coins. After delivering
the candy it calculates the change. The controller
delivers either correct or incorrect results (fault in
the numerical computation).

candies out delivers the candies according to the
command from the controller. The end of the
process is reported back to the controller. Errors
of the component are inc (wrong type of candy
is delivered) or dead (candy is out of stock).

Inputs of the system are: coin in, select candy,
while change and out are its outputs. The initial state
of fault-free components is ok0. A verbal interpreta-
tion of some �ring rules of the candies out node (Fig-
ure 2) is:

f1- In a fault-free system this rule describes the can-
dies out node. As only error free messages are
received on its input (to candies out=ok) it al-
ways remains in its error free state ok0 and
sends error free messages to its outputs (ok->
from candies out and ok->out)

f2- Describes the error propagation of the fault-free
component in the state ok0. An erroneous input
(to candies out=inc) will result in faulty deliv-
ering of candies (out->inc) while the other out-
put is assumed to remain una�ected by the error
(from candies out->ok). As an external fault
does not have a permanent e�ect on candies out,
it remains in its error free state ok0.

f5- Due to an assumed internal fault, the compo-
nent is permanently in the erroneous state inc.

Correct input messages (to candies out=ok)
will be resulting in incorrect output out->inc
value (wrong type of candy is delivered), but
a correct signal will be sent to the controller
from candies out->ok (candy is delivered suc-
cessfully).

3 Test Strategy Design
The basis of e�ective fault detection and diagnos-

tics is a well planned test strategy. This test strategy
describes the execution order of the tests of a given
subset of the system's test set. Selection of the subset
is done according to some criteria, like test time min-
imization, maximum fault coverage, safe testing, etc.
The test set of the system usually is created automat-
ically from the system description and fault model. It
contains the test vectors describing the inputs of the
system being necessary to detect component faults at
the outputs of the system. Inputs of the system can be
either the primary inputs (PI), or special, test inputs
(TI). Outputs once again are either primary outputs
(PO), or test outputs (TO). Earlier test pattern gen-
eration was executed at the logic-gate level. Since in
case of complex systems the very large number of logic
gates prohibits the use of traditional test generation
method, new approaches are necessary. In this sec-
tion it will be shown that test strategy design can be
done concurrently with system design even at a higher
level of abstraction by using a dataow model based
automatic test pattern generation (ATPG). ATPG at
the logic-gate level is a very well elaborated �eld of
the computer science o�ering well-proven solutions for
practical problems. As our approach uses a general-
ized form of gate-level ATPG, at �rst a comparison
between logic-gate level description and the proposed
dataow description is given:

� In the gate and module-level stuck-at fault model,
faults are modeled at the output of logic gates.
Faults of a functional dataow node are man-
ifested similarly at the outputs in the form of
faulty messages.

� The behavior of a dataow functional element is
described by a transfer relation, similarly to the
truth or state transition tables of logic gates and
modules.

� The model may contain loops that, just like in
case of sequential logic have to be cut and an
iterative array model can be constructed in both
cases [1].

� Since dataow components can have internal
states as well, the testing of a system requires
a prede�ned initial system state. (In practi-
cal dataow models examined till yet there was
no need for the search of a self-initialization se-
quence.)

Due to this correspondence, methods and solutions of
logic-gate level test pattern generation can be gener-
alized for the dataow model and high-level ATPG
algorithms can be generated. As a representative ex-
ample the D-algorithm [1, 9] is selected, that is well
known and widely used for test generation for stuck-at
faults in logic circuits.

3.1 The high-level D-algorithm
In order to generate a test for a given fault the

problem of test generation is recursively divided into
the subproblems of:

� error propagation
� line justi�cation
� implication and checking

Error propagation tries to propagate the error of a
line to the POs, line justi�cation is responsible for
setting the PIs according to the fault of a given node,
and implication and checking aims at the reduction of
the problem space. The D-algorithm performs impli-
cation and checking after each line justi�cation and
error propagation step. Error propagation has pri-
ority over line justi�cation. To keep track the still
open problems two sets are maintained during the al-
gorithm: the J-frontier containing the gates of which
inputs have to be justi�ed and the D-frontier contain-
ing the gates from the inputs of which the error has
to be propagated towards the POs.

Due to modi�cation during adaptation, our solu-
tion of the subproblems is slightly di�erent from the
original one:

� Due to the multi-valued fault model not only 0
and 1 values are used. (E.g. in the candy au-
tomaton example ok, inc, dead, x values are
used.) In correspondence with it instead of value
pairsD (1 in the good, 0 in the faulty circuit) and
D (0/1), various value pairs are propagated. (In
the example ok/inc, ok/dead, ok/x, inc/ok,
inc/dead,
inc/x, dead/ok, dead/inc, dead/x are prop-
agated.)

� Instead of the truth table �ring rules are used.
Possible actions depend on the state of the com-
ponent. States of the component have to be con-
sistent in subsequent blocks of the iterative array
model (predecessor and successor states). For this
reason nodes and channels are instantiated, i.e.
objects with the same instance number belong to
the same block.

� Since components may have multiple outputs the
J- and D-frontiers contain channels instead of
gates.

� Checking has to ensure that the additional con-
straints imposed by the global testing require-
ments are ful�lled. E.g. in safe testing the prop-
agation of a dead token is prohibited.

� A frame program of the high-level D-algorithm
(Figure 3) is necessary because components may
have multiple outputs, thus error propagation can
be started in more than on direction. The set in-
put mappings (IM), created in Step 4, contains
all those input mappings for which a fault pair is
activated on one or more of outputs of the com-
ponent. Test generation is successful if at least
for one input mapping the D-algorithm executes
successfully, Step 5{8.

The high-level D-algorithm (Figure 4) recursively
calls itself and at each call performs the possible im-
plications, checks the decisions made by the previous

SUCCESS or IM is empty

begin

repeat

until
end

create the set of input mappings IM

select the next element of IM
D-alg()

3:

1:
2:

4:
5:
6:
7:
8:
9:

set node N state to err

test generation algorithm(N, err)

Figure 3: The test generation algorithm

begin
D_alg()

if (imply&check()=FAILURE) then FAILUREreturn
if (error not at PO) then

if (D-frontier empty) then return FAILURE
repeat

select C from D-frontier
if (Propagate(C)=SUCCESS) then return SUCCESS

until all elements of D-frontier have been tried
return FAILURE

if (J-frontier empty) then return SUCCESS
select C from J-frontier
if (Justify(C)=SUCCESS) then return SUCCESS
return FAILURE

end

3:

1:
2:

4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:

Figure 4: Procedure D-alg()

call and solves an error propagation or a line justi�ca-
tion subproblem (Figure 5).

The Imply&check() procedure selects all the com-
ponents of which inputs or outputs have been changed
since the last call (Step 3). Then it tries to make im-
plications and consistency check for the selected com-
ponents. If check fails for any of this components no
test can be generated. When encountering such a sit-
uation this solution will be immediately rejected as if
it was a contradiction and backtracking is invoked.

Suppose that channel C is an output channel of
component N. The procedure Justify(C) creates the
subset of �ring rules of N, such that �ring rules be-
longing to F produces the required output on C. Then
D-alg() is called to continue test generation. If this
fails for all elements of F, channel C can not be justi-
�ed.

The function of Propagate(C) is similar to that of
Justify. In this case C is an input channel of the node,
and �ring rule pairs from FP have to propagate the
fault pair present on C to one or more outputs. If the
continued test generation fails for all of the selected
�ring rule pairs, the fault on C can not be propagated.

3.2 Complexity issues
The algorithms, especially the error propagation,

line justi�cation, and implication procedures, are
slightly more complex then the original one due to
the higher complexity of functional dataow elements.
Moreover due to the multi-valued fault model the deci-
sion tree of such an ATPG algorithm is larger, e.g. for
a given decision the number of alternatives is higher.
This can lead to an increased number of backtracking.

Since the dataow semantics used for the model-
ing maintains the compositionality property [7] these
complexity issues can be managed by hierarchical test
generation. Suppose that the test results of a subnet-
work for a given test vector are known (a partial test

begin

repeat

end

until
return FAILURE

all elements of FP have been tried

set inputs, outputs and component state
if (D-alg()=SUCCESS) then return SUCCESS

Justify(C)

create the set F3:

1:
2:

4:
5:

9:
8:
7:
6:

begin

repeat

Imply&check()

create the set N

select the next element of N

if it can be done uniquely

end
return
until

then return FAILURE

SUCCESS
all elements of N have been processed

3:

1:
2:

4:
5:

8:

6:

7:

9:
10:

begin
Propagate(C)

create the set FP
repeat

select the next element of FP and

end

until
return FAILURE

all elements of FP have been tried

set inputs, outputs and component state
if (D-alg()=SUCCESS) then return SUCCESS

3:

1:
2:

4:
5:

9:
8:
7:
6:

set inputs, outputs and state of the node

select the next element of F and

if (input-output, state or criteria inconsistency exists)

Figure 5: Procedures for solving subproblems

has been generated). If this is placed into a larger
dataow network, test generation can be started with
error propagation from the output of the subnet to
the POs and line justi�cation can be started from the
inputs of the subnet towards the PIs of the system
without going inside of the subnet.

3.3 Test generation for the example
To enlighten the previously presented algorithm,

test generation is presented in details (Figure 6) for
the inc fault of the controller component in the sim-
ple example. The test generation procedure is shown
in Figure 6 step-by-step.

Vertical partitioning of Figure 6 denotes the di�er-
ent steps of test generation. In horizontal partitioning
the leftmost part contains the identi�er of the steps. In
the middle the unfolded dataow model of the system
is shown (only channel and nodes with de�ned state
are shown) and in the rightmost column states of the
nodes and the channels, the J- and the D-frontiers are
enlisted. The di�erent steps in the process are:

Step 1: State of the controller is ok0=inc. The input
mapping (from coin in=out0 = ok;
from select0 = ok) is selected and outputs
are set according to it: a value pair ap-
pears on the output channel of the con-
troller (ok=inc� > to candies out0). The D-
algorithm can be started.

Step 2: Error propagation step: the value pair from
to candies out0 is propagated through the com-
ponent candies out. A value pair appears on the
PO out0, but propagation can not be stopped,
there is still data on channel from candies out0.

coin in/out

controller

candies out

coin in/out

controller

controller

controller

candies out

candies out

controller

controller

controller

controller

controller

candies out

controller select

candies out

controller

coin in/out

controller

ctrl =ok /inc
from_select =ok
from_coin_in/out =ok
to_candies_out =ok/inc

D={to_candies_out }

0 0

0

0

0

0

out =ok/inc
candy =ok

from_candies_out =ok

D={from_candies_out }
J={from_coin_in/out , from_select }0 0

0

0

0

0

J={from_coin_in/out , from_select }0 0

J={from_coin_in/out , from_select }0 0

to_coin_in/out =ok/inc
ctrl =ok /inc

D={to_coin_in/out }

1

1

1

D={}
J={from_coin_in/out , from_select }0 0

0

coin =ok1 1
change =ok/inc1

D={}
J={from_select }

coin =ok0 0

0

coin_in =ok0

D={}
J={}
select_candy =ok
select =ok0

0

0ok/inc

block 1

ok ok

ok
ok/inc

ok/incokok

ok/incblock 0

ok/inc

block 1

ok ok

ok
ok/inc

ok/incok

ok/incblock 0

Step 5:

Step 6:

1

ok/inc

block 1

ok ok

ok
ok/inc

ok/inc

ok/incblock 0

Step 4:

Step 3:

ok/inc

block 1

ok ok

ok
ok/inc

ok/incblock 0

ok ok

ok/inc

block 0

Step 2:

ok ok

ok
ok/inc

ok/incblock 0

Step 1:

Figure 6: Test generation for inc fault of the controller

input system state output
coin in select candy coin in/out select controller candies out out change

ok ok ok ok ok ok ok ok
ok ok inc ok ok ok inc x
ok ok ok inc ok ok inc ok
ok ok ok ok inc ok inc inc
ok ok ok ok ok inc inc ok

inc ok ok ok ok ok inc ok
inc ok inc ok ok ok inc x
inc ok ok inc ok ok inc ok
inc ok ok ok inc ok x inc
inc ok ok ok ok inc x ok

ok inc ok ok ok ok inc ok
ok inc inc ok ok ok inc x
ok inc ok inc ok ok inc ok
ok inc ok ok inc ok x inc
ok inc ok ok ok inc x ok

Table 1: Results of fault simulation

Step 3: Error propagation from from candies out0
through the controller. This will be the sec-
ond instance of the controller in the test. A
value pair is propagated to from coin in=out1.
(from coin in=out1 denotes that the channel is
in the second block of the iterative array model.)

Step 4: Error propagation from from coin in=out1
trough component coin in/out. The value pair
ok/inc reaches the PO change1 and the D-
frontier is empty. Error propagation is �nished,
line justi�cation can be started.

Step 5: Line from coin in=out0 is justi�ed by set-
ting PI coin in0 to ok.

Step 6: Justi�cation of from select0 by setting PI
select candy0 to ok. The J-Frontier is empty,
the system is in consistent state (components in
the �rst block are in their ok0 state), test gener-
ation is �nished successfully.

The generated test vector maps ok on both coin in
and select candy. As a result in the fault free system
ok appears on both outputs of the system: out and
change. If the components coin, candy, and select
are fault free and the controller has the fault inc, after
applying the test vector inc appears on both outputs
of the system.

4 Testability Analysis
For testability analysis the integrated diagnostics

approach of Sheppard et. al. [11] is used. This ap-
proach is based on the conclusion-test and test-test
dependency relations. Conclusion is the isolation of a
fault, in our case fault of a component. Test is any
information source relevant to the diagnostic prob-
lem. Dependency relationships among tests and con-
clusions are described in form of a directed depen-
dency graph. In the dependency graph tests and con-
clusions are represented by nodes (tests are denoted

graphically by circles, conclusions by boxes) and de-
pendencies are directed edges. If a test T2 depends
on T1 (if T1 fails T2 will also fail), then a path exists
from T1 to T2. Similarly if a test T3 depends on the
conclusion C1 (if C1 fails T3 will also fail), then a path
exists from C1 to T3. (A test fails, if it does not deliver
the intended result). The adjacency matrix of the de-
pendency graph, the so-called dependency matrix, has
two parts, one describing test-test dependencies (up-
per part) and a second one describing conclusion-test
dependencies (lower part). If conclusion C3 depends
on test T1 then the [3,1] element of the lower part is
set. Based on the dependency matrix di�erent testa-
bility measures can be computed [11]:

� isolation level (ratio of diagnosable faults)
� nondetection (fault coverage)
� test leverage (robustness of the test set)
� overtesting (ratio of uniquely diagnosable faults
to number of tests is relatively high)

� undertesting (ratio of uniquely diagnosable faults
to number of tests is relatively low)

� test uniqueness (a test can detect/diagnose only
one fault)

� test redundancy (multiple tests can detect and/or
diagnose the same fault)

� false alarms (the cumulative e�ects of multiple
faults produces an identical syndrome as a di�er-
ent fault)

This method of testability analysis is used in our
modeling approach since all dependency relationships
can be extracted from the dataow model by means
of fault simulation. For this purpose in [6] a parallel
fault simulation is proposed. In the previously pre-
sented example 5 possible conclusions can be consid-
ered: C1 is coin in/out=inc, C2 is select=inc, C3 is
controller=inc,C4 is candies out=inc, and �nally the

T1a F F F
T1b F F f f f f
T2a F f
T2b F f f F f f
T3a f F
T3b F f F f F F
C1 F f F f F f
C2 F F F
C3 F F f F f F
C4 F f f
C0 F F

T1a T1b T2a T2b T3a T3b

Table 2: Dependency matrix for the example

conclusion no fault is denoted by C0. (For simplicity
dead faults are omitted.) In the analysis of the exam-
ple 3 tests are considered: T1 (the one generated in the
previous section, a test for controller=inc), T2 (for the
fault controller=inc), and T3 (for candies out=inc).
They map the inputs coin in to ok, inc, ok and
select candy to ok, ok, inc. The outputs out and
change are referred to T1a, T2a, T3a and as T1b, T2b,
T3b.

Simulation results are shown in Table 1. The cor-
responding dependency graph is in Figure 7 and the
dependency matrix is in Table 2 respectively. In the
dependency matrix F denotes "strong" dependency,
i.e. when a conclusion fails the test will also fail, while
f denotes "weak" dependency, i.e. when a conclusion
fails failure of the test will depend on the actual value
in the test vector, corresponds to an x output value.
In the graph solid lines present "strong" dependency,
and dashed lines present "weak" dependency.

How is the dependency graph extracted from the
simulation results? For example, each time the inputs
are ok, ok and coin in/out fails, T1a will also fail as
denoted by the inc result on out. In the dependency
graph it is represented by the solid line from C1 to
T1a, while in the dependency matrix by the element
[7,1]=F. In the same case test result T1b is data de-
pendent (output change is x), thus the dependency is
represented by the dashed line from C1 to T1b and by
the element [7,2]=f.

In the analysis the term pessimistic case is used,
when only "strong" dependencies are considered. The
term optimistic is used when also "weak" dependen-
cies are taken into account. The pessimistic case is
the worst case of analysis from the point of view of
dependability measures. On the other hand in opti-
mistic case the upper bound of dependability measures
can be estimated.

Since the example is simple not all of the previously
mentioned testability measures are really meaningful.
The most important results of the analysis are:

� It can be seen from the dependency matrix, that
none of the faults produce an identical syndrome
as the fault-free case. Thus fault coverage is

T

C

1a

2

T

0C

1b

T2a

4C

T2b

C

C

T3a

3

1

T3b

Figure 7: Dependency graph for the example

100%, all faults can be detected in both the pes-
simistic and in the optimistic case. (Syndrome is
the result of tests when the given fault occurs.)

� Isolation level equals the ratio of uniquely isolat-
able groups to all fault conclusion and denotes
the ratio of diagnosable faults. In the pessimistic
case failure signatures can be divided into three
groups (group1: C1, C3; group2: C2; group3: C4)
according to the observable fault e�ects enlisted
in the dependency matrix. Thus the value of iso-
lation level is 3=4 = 0:75. In the optimistic case
the number of groups is 4, thus isolation level is
1:0 indicating, that all of the faults can be diag-
nosed although tests have been generated only for
the controller and for candies out.

� T1 and T2 are redundant, since in all cases they
result in identical syndrome. Thus one of them
can be left out during the system test.

5 Conclusion and Future Work
In this work we presented a modeling approach

which can be used in the early phases of HW-SW code-
sign. It supports testability and dependability analy-
sis as an integral part of the design process, since in
the proposed dataow model both the functional and
error propagation/fault e�ects information are incor-
porated. By means of a simple example we have shown
that even in this phase of the design test strategy de-
sign and testability analysis can be done concurrently
with the system design.

Future work incorporates the implementation of an
environment in which dependable hardware-software
codesign can be done. For this reason the Ptolemy
[8] design environment, developed at the University of
California at Berkeley, was used. As part of the future

work we want to identify and examine the constraints
imposed by the various testing criteria on HW-SW
separation.

Acknowledgments
The authors want to express their gratitude to Prof.

M. Dal Cin and Prof. L. Simoncini, whom hosted
them for a period at the University of Erlangen, Ger-
many, and at the University of Pisa, Italy respectively,
where this work was started. Also their useful com-
ments to this work are gratefully acknowledged.

References
[1] M. Abramovici, M. A. Breuer, and A. D. Fried-

man. Digital Systems Testing and Testable De-
sign. Computer Science Press, New York, 1990.

[2] C. Bernardeschi, A. Bodavalli, and L. Simoncini.
Dataow Control Systems: An Example of Safety
Validation. In Proceedings of SAFECOMP'93,
pages 9{20, Poznan, Poland, 1993.

[3] A. Bondavalli and L. Simoncini. Functional
Paradigm for Designing Dependable Large-Scale
Parallel Computing Systems. In Proceedings of
the International Symposium on Autonomous De-
centralized Systems, ISADS '93, pages 108{114,
Kawasaki, Japan, 1993.

[4] G. Boriello, K. Buchenrieder, R. Camposano,
E. Lee, R. Waxman, and W. Wolf. Hard-
ware/Software Codesign. IEEE Design and Test
of Computers, pages 83{91, March 1993.

[5] Gy. Csert�an, C. Bernardeschi, A. Bondavalli, and
L. Simoncini. Timing Analysis of Dataow Net-
works. In Proceedings of the 12th IFAC Work-
shop on Distributed Computer Control Systems,
DCCS'94, pages 153{158, September Toledo,
Spain, 1994.

[6] Gy. Csert�an, J. G�utho�, A. Pataricza, and
R. Thebis. Modeling of Fault-Tolerant Com-
puting Systems. In Proceedings of the 8th
Symposium on Microcomputers and Applications,
uP'94, pages 95{108, October Budapest, Hun-
gary, 1994.

[7] B. Jonsson. A Fully Abstract Trace Model
for Dataow Networks. In Proceedings of the
16th ACM symposium on POPL, pages 155{165,
Austin, Texas, 1989.

[8] A. Kalavade and E. A. Lee. A Hardware-Software
Codesign Methodology ofr DSP Applications.
IEEE Design & Test, pages 16{28, September
1993.

[9] J. P. Roth, W. G. Bouricius, and P. R. Schnei-
der. Programmed Algorithms to Compute Test to
Detect and Distinguish Between Failures in Logic
Circuits. IEEE Transactions on Electronic Com-
puters, EC-16(10):567{579, October 1967.

[10] J. M. Schoen, editor. Performance and Fault
Modeling with VHDL. Prentice Hall, Englewood
Cli�s, New Jersey, 1992.

[11] W. R. Simpson and J. W. Sheppard. System
Test and Diagnosis. Kluwer Academic Publish-
ers, 1994.

