Standard platforms: Web services
(and dependability)

Laszlé Gonczy

Dept. of Measurement and Information Systems

Budapest University of Technology and Economics

Department of Measurement and Information Systems

= Basics of Web services (WS-*)

Web service architecture

* One possible way of ,,SOA”

Service
descriptions

Client Provider

Web service architecture

* One possible way of ,,SOA”

Service
descriptions

\’ublish

Client Provider

Web service architecture

* One possible way of ,,SOA”

Service
descriptions

Query /

Client Provider

Web service architecture

* One possible way of ,,SOA”

Service
descriptions

Service Iis‘/

Client Provider

Web service architecture

* One possible way of ,,SOA”

Service
descriptions

, Request ,
Client — Provider

Web service architecture

* One possible way of ,,SOA”

Service
descriptions

. Response .
Client G Provider

Web Services standards

= XML languages
= Low level specs. of functionality

-

Communication layer

(on top of a
transport layer:

HTTP, FTP, JMS, ...) UDDI / WSIL discovery

&

method invocation

SOAP

Web service stack

Web service standards

= XML languages
= Low level specs. of functionality

UDDI / WSIL

discovery

method invocation

SOAP

Web service stack

Web Service standards

= XML languages
= Low level specs. of functionality

UDDI / WSIL discovery

method invocation

SOAP

Web service stack

Objectives of service integration

= Service-Oriented Architectures (SOA):
o Flexible and dynamic platform to deliver business services

= Requirements:
o Reduced time-to-market
o Increased quality of service

= Challenges
o Specification and querying of services?
o Correctness and consistency of service composition?

o Continuous operation in changing environment
(no service outages)?

o Design for justifiable SLA-compliance
(security, performance, reliability, availability)?

= To meet such non-functional requirements,
o A service needs to be designed for reliability
o Architectural level design decisions

What is ,,non-functional”?

= Everything which is above the core functionality

I”

o Also called , extra-functiona

= Under what circumstances is a service provided?
o When is it available?
o What response time does it guarantee?

o How many requests can be sent to the system (from
how many clients)?

o What prevents messages from being lost?

o Can messages of a given service be tampered with?

The beautiful world of standards....

Business Processes

e —

515 W5-Fede dtion] (

C WS5-Discovery >

{ L Passive profile

(_ Active Profile

)

[N)

7

D

—
on |

(G

OASIS WS5-5ecurity 1

A
x50 ~ate Token p — 4
“gen
1age }
— F
SAMI Token } Il I sactio

C

{(W5-PolicyAttachment)

— "\‘ |(W5-Busir, ot tivity \]l ‘

-
((WS-Transfer)(W5-Enumerat

-
(W3C WsDL _) (W3C Ws-Addressing y

7 NI

M —

,,,,,

k(uri/ iR) wre) teepoe)

_
- I -

GeliahleMessaging)
o

"

B T W3C XML
Encryption
(Canonical XML :}(Exclusive XML Canonicalization \' dl
(W3C XPath)(DOM)(W3C XML InfoSet) (

Transport

Crom) vor) J

Reliable messaging: WS-RM

= TCP protocol” for Web services

= What is reliable messaging?
o Acknowledgements Appication Applicaton
Message ordering soues Sesinaten

®

o Filtering duplicates

o Guaranteed delivery E E
o Timing paremeters

= Messaging semantics T >
o At-least once
<Aﬂknnwledga [

o At-most-once
o Exactly-once

= Convergence of multiple standards (MS, IBM)

" |Implementations
o RAMP (IBM WebSphere Application Server)
o Apache Sandesha (Axis2)
o Microsoft Windows Communication Foundation
o Bea WebLogic (- Oracle)

Standards:WS-Security

" Encryption for body and header
= Digital signature for body and header
= Authentication tokens

" Timestamps allow the user to specify timestamps
for messages

Security Authority |
v Web Service
e.g. Session Manager |

Authentication
request

Session A

-) N
‘ token Session token Session token
Web Service | & Validation Validation
2 Request Response
Client v Web Service
Request including

session token

Web Service b Appllcatapn
Response Web Service

Example: components of a financial case study

= FinancialCaseStudyStructure

=l
authenticationService :
AuthenticationService
emploveePort ; EmployesPort

authPort : AuthPort

authPart : AuthPart employeePort : EmployveePaort
- gj

creditRequestProcess :

CreditRequestProcess

balancePort : BalancePaort

balancePort : BalancePaort

customerPort : CustomerPort

customerPort CustomerPort

=]
employeeTransactionService :
EmployeeTransactionService

2]
balanceValidationService :
BalanceValidationService

2]
customerTransactionService :
CustomerTransactionService

Example: finance case study

= All services should be available only via secure connections. This means
digital signatures for the entire message and encryption of the message
body. Messages sent to this service should be acknowledged.

= Customer Transaction Service should provide an answer to the customer
about the receipt of his request soon, therefore its maximum response
time should be no longer than 8 seconds.

= Balance Validation Service should send an acknowledgement of all
incoming request. As this is a resource-intensive task, multiple instances
of the same request should be identified and filtered out. Since the
complete balance validation may require human interaction as well
(depending on the business rules of the bank), a quick answer to all
validation requests cannot be expected. However, some feedback about
the initiation of the validation process should be sent back soon, with an
average of 5 seconds and maximum value of 8 seconds. The throughput
of this service is also of outmost imﬁortance, resulting in a requirement
of 6 user requests per second. On the other hand, maximum throughput

of thedserwce is also bound due to the bank policies in 20 requests per
second.

Example: finance case study

= Authentication Service is used by many applications,
therefore its throughput can be a bottleneck in the
system. To support a continuous service, a minimum
throughput of 100.000 requests/hour is required.
This throughput is used by multiple the applications
relying on the authentication service, e.g., Credit
Request Process.

" Credit Request Process is depending on the above
services. Most of its requirements are derived from
requirements of the invoked services (e.g., where
and what to encrypt), but some are also implied by
the customer portal interface. Such a requirement is
the performance of this process and the non-
repudiation of requests.

= Fault classification &fault injection for Web
services

Web service faults and effects

PHYSICAL DEVELOPMENT INTERACTION
.J'J'\ _F'-‘}\-\‘-_
K_A \l4 u“w" N
@ . s £
e B, g% 3 0§ <o
g 5 g 2 E & g £ £, 5
3 = ; = - E b= E’_ e
2= g Z£ 2T 3 T 5 £ Oz 5 @
- i i Ea B P = E E 2= E
5 § TESETIS 5 £ 5 2 33 & < o
S E EEfEZ3 E E E E 2 & 7 &

Development | *—0—0—¢
Operational ®

Internal

External

Hardware

Software

Unresponsive Incorrect More than Incoherent Slow Qutdated

Observed 4 .

Effects eb Service resulis one unigue results Service results
output
from
service

Fig. 6. Taxonomy of faults, combined with observed effects

Fault injection models

Bernoulli Random Variable Stochastic Process

10, 11, 12, 13, 14, 15] —
17, 18, 19, 16]

20. 21]

Service
Platform

Bernoulli

Application Server/ | -
distribution

SOAP Framework
Virtualisation —
Storage,/Databases Random variable

Communication (distribution, density,

Web Services Stack .
WS Infrastructure mean+ quantlle"")

WS Transport
Internet Jnfrast-run:-:
ture
Internet Transport |[33, 34, 35, 16] —

WS-FIT

= Web services fault injection technology
o Univ. Durham, Univ. Leeds

= Standard network level fault injection techniques:
o Easy to detect at the application/middleware level

= RPC level faults can be injected
o WSDL = API
o SOAP level fault injection

* Handling of middleware faults can be tested

o E.g. Axis failure modes: connection refused, unknown
host, wrong content type, XML parser errors...

Test case

Thermocouple Heater
Instrumented e g W Instrumented
SOAP API &, = SOAP API
.------l—l--l-.l—b g =
r r--.-l- __ A8 R B R B BB m m
™ . g g
[: AP
| ! »*® Receive Hook
|
]
]]
i Injecting a Latency Into the System
= Trigger ™
[2 . //
- Script v |
han £ T
4 1 ‘g' 33 .0 / ——Linear Client with Latency
Results I ¥ . : / - Lingar Client without
- E-)- / Latency
hd [] : 2 08 3 o2 ma sa
] |
| Time (seconds)
| Receive Hook o
WS-FIT 5 Instrumented SOAP % ﬂ
s API
= Messages to/from WS-FIT
1 3 £
HeaterController -
Messages to/from SOAP Stacks

Security analysis

Systematic attack based on WSDL

o Public information

,Brute force” attack (XML parsing)
o Overloed: parsing comes bottleneck
,XML injection”

o Changing the parsing process
* Eg. using XPath, XSTL, XQuery

External reference-based attack

o Linking a document

SOAP protocol level attack

Network level attack

= Performability analysis of WS-middleware

Performability analysis

=, Performability = Performance + Reliability”
= What happens if something goes wrong?

o E.g., reliable communication middleware with re-
sending can mask network faults but the guarenteed
response time can be longer

o E.g. if the acknowledgement interval is too small, false
alerts are sent

= What is the ,cost of reliability”?
= How to tune SLA parameters?

Performability model

= Abstract behaviour of
o Service provider
o Service consumer
= Reliable messaging parameters (derived)
e Number of resends
e Parameters of send, resend, ack (exponential distribution)

Service Provider Service Requestor
! lack |

lsen(l Ireend lregend /
lack ?send send : timdbut tirdeout timeout
resend
__ Sentlx Sent2x Sent3x

ack

?ack ?ack ?ack I

rescl

Analysis results: Utilization

Steady state analysis of Throughput / Utilization

What percentage is fault handling (when the client waits)?

MsgSent2

Success

MsgSentl

Failure

MsgSentl

Faill

Fail2

Clientldle

\

~ ~23%

Analysis results: Sensitivity analysis

Sensitivity Analysis: where to improve?
How does the probability of system-level failure change
if there is a change of the parameter of resend?

Parametrised XY Plot

| Small increase in Ack rate,
: significant reduction of failures

0,075 e
0.050 —_—

A

0,000
0175 0Oj200 0,225 0250 0275 0200 (03225 0350 0375 0400 0425 0450 0475 0500 0525 0550 0575 0600 0625 0G50 0675 0,700
Rate rateAck

— Rate rate 3 —Ratera ' Rate rateTimeout 0,5 Rate rateTimeout 0,6 — Rate rateTimeout 0,7 Rate rateTimeout 0,8
Rate rateTime

= Correctness of service compositions

Analysis of service compositions

Design tools offer only syntax check
Static analysis in BPEL 2.0

o Constraints on workflows (attributes, structure)

Safety critical services
o E.g. e-Health

Ensure correct functioning of combined services

BPEL flaws

=

- Course change workflow = Missing data
- = Deadlock
@ Receive Input Data = Effect of faulty data

— Assign Data to Invokes

& Invoke Educational Service & Invoke Admin Service
¢ Change request accepted?
Change request accepted? El‘ile

= Assign Confirmation Data ~ Assign Rejection Data

4»| Send Reply

Workflow assessment

Workflow

Generation l description

Graphical
editor

Workflow
engine

l Runtime mﬂfati@mm

Improvement observations

Transformation chain

Business
BPEL BPEL
Process o BPEL model
Editor I:D Description I:> Importer I:> (VIATRA)
(Eclipse) (XML) (Java)

Transition
system
Model

(VIATRA)

Traceability
information
— (VIATRA)

Execution

SAL
Description
(text)

Model

<}:| Checking <}:|

(SAL)

Counter-
example

Case study&back-annotation

Credit request process \ Variables

Login dat

Login success
/ Scope

Customer data

T~
/" Cancel event handler | /" Faulthandler Cancel
Remove data T
Throw error) Error reply
v Balances
Ve Repeat until update desired \

{_ Create new credit request) Rating data

Agreement data

Enter balance data Enter security data Error string

gl

Logout success

(_ Calculate rating

/ Rating not AAA?
|
| True | Activity states

Rating BBB?
\ Passive

True False
Startable
(_Clerk approval) || (Supervisor approval)
Wait for approval

L LV

* Variable states

/ Rating accepted? \

{Accept request) (_Rejectrequest)

Uninitialized

Correct

Il

Send Reply

= Performance analysis of service compositions

Performance analysis with PEPA

= PEPA is a formal language for quantitative analysis of
systems

* A modelis expressed in terms of components which perform
timed activities and co-operate with each other
= Based on process algebras,
= Synchronization, Parallel, sequential composition
= Length of activities: Exponential distribution
= Generates continuous-time Markov chain (or differential equations)

= PEPA supports steady-state analysis to answer questions
such as:

* What is the percentage of time that the local discovery server is
idle in the long run? (Utilisation Analysis)

= What is the throughput at which remote services are
discovered? (Throughput Analysis)

= What is the probability that the system does compensation
upon notification of failure?

UML4SOA Performance Analysis

= The transformation of UML4SOA-annotated activity diagrams follows the
rationale behind the treatment of plain activity diagrams:

o An Action Node is stereotyped with PaStep, which indicates the rate of
execution (with an exponential distribution). It is modelled as a prefix
(action, rate).Process

o A Decision Node is modelled with a PEPA choice ProcessA + ProcessB

o A Fork Node activates one or more flows of behaviour, modelled as
synchronising sequential components

o AJoin Node makes all incoming flows synchronise on the same activity,
enforcing that the outgoing flow executes after all the incoming ones
terminate

39

Performance Analysis with PEPA

= Key UML4SOA-specific element: communication between activity
diagrams

dOA

A <<send>> C T @
B 02::data
<<snd> <<|nk>> r4
data 02

<<roy>> <<|nk>>

data [o1

<<receive>>

= Each activity is modelled as a distinct component

= Message exchange modelled as a shared activity (named after the
sender’s pins <<snd>> and <<Ink>>)

= Support for asynchronous and synchronous messages (according to the
stereotypes <<send>>, <<receive>>, <<reply>>, etc.)

o Here, the asynchronous message is dispatched by a buffer component and
the sender does not wait while the communication is happening

(Sender)

(Receiver)

Orchestrator 2 | Orchestrator 1

40

Performance Results

Throughput of appSuccess
o

0 20 40 60 80 100
Number of users
Varying Workload. The number of applications processed successfully grows

with the number of users. A bottleneck occurs for populations larger than
93.

Performance Results

105

100

95+

90|

851

Throughput of appSuccess

801

75 ' ' '
0 50 100 150 200

rcheckF{eq
Sensitivity Analysis. The number of applications processed depends on the
rate at which the entry requirements are checked. However, for sufficiently
large rates further increases do not impact significantly on the user-
perceived system performance.

= Dependability analysis of service compositions

Dependability analysis of composite services

Composite services

= Composed of basic service components

= Only partial control over the different services
Analysis of composite services

= According to SLA parameters of services
(e.g. throughput, reliability, availability)

= User perceived service: . _
potentially different service levels for different users

= Required parameters for the invoked services
= Guaranteed parameters for the main service
Non-functional analysis

= PREDICTION of

o Dependability metrics for the services
o Business impacts

= WHAT-IF analysis

Phased Mission Systems

Upper layer: phases

eOperational life

[8] DEEM » eoTree or cyclic Petri Net

B Eat et Specid Zoom Compute *One active phase (,,performing action X”)

| I - Routing may depend on resource states

Multiple Phased Systems

eSystems which lifecycle consists of different phases
ePhases have different resource characteristics
eExpected response time

eFailure rate, etc.

DEEM tool
eDependability Evaluation of Multiple-phased Systems
eRepresentation: Deterministic and Stochastic Petri Nets
eEvaluation: Markov Regenerative Processes
eDeveloped in Pisa/Florence

o Lower layer: resources
eRepresenting the state of the system
eCharacteristics depend on the actual phase

DEEM 1.7 (€) 2000-2005 Universily of Rorence and CNUCE-CNR Fisa

........... B g) S) R

Example: Phased Mission Systems

Stochastic modeling

Phased operational life
System changes during the phases

o E.g. resource states
System characteristics depend on the actual phase
o E.g. phase-dependent failure rates
Mission goal depends on system state
o Degradation

Dependability modeling and analysis

o Described as GSPN

o Originally for mission-critical systems

SOA service flows as PMS

= SOA service flow as PMS
" The operational life is built of distinct steps
o Web service invocations are the phases

o The dependability requirements of the phases are
different

* Based on Service Level Agreements

o The execution of the phases depends on the result
of previous steps

* Restricted operation if a service invocations fails
" Dependability of the main service
= Bottleneck analysis
= Sensitivity analysis
o Component’s failure rate — System dependability

JToolchain”

VIATRAZ framework

BPM2ZMPS
=
Graph

MPS2DEEM

DEEM
model

DEEM tool

Graph
BPM tool BPM - ™

(IBM WBI Modeler) description BPM parser |

/

Analysis
results

An example Web service flow

‘s ¢.ﬂ UzerFequest ‘3‘
)

Zend_local_answer
@ l?ﬁl Uzerfequest
5 Sirnple_reu
Process_request qest

:@ UserRequest W
Mo

4@ Check_ak?
&b iResult
Send_to_setvicel 12y iResult
o

The resulting PMS

clientRequest simple

processRequest

»|

servelLocal

sendAnswerLlL | PhN |
@1 @ 8|
» Yes local After_1 sendAnswerl angwecloGlientls , TheEnd
Al — > l il i | i =’
No endTol servicel Ok_1 answerToClient|
Fail_l
sendTo2 sendAnswer2 |
o @ 1-@ I
tolnit [nit service?2 answerToClient2

webServer_up webServer_fails

@ tfl—
localServ_up
@

loicalService

—

servl_up
i —

webServer_down | SN I

localServ_down

servl_down serv2_up
> | >

conf

serv2_down

4.‘ el

remoteService2

= Automated deployment

Why do we need development support?

= Evolving standards and platforms
= Configuration details not known for application developer

"= The (XML) configuration is not portable if the model
changes

= Consistency of large systems have to be ensured
= E.g.SLA 2 WS-* mapping

= Service intgerator can focus on business logic

= Helps ,correct” modeling/development

o Find incorrect/contradicting requirements

o Domain/business specific requirements

Why model transformations?

Why not XSLT, Jet,7

They capture the problem at a higher level of abstraction
Easier to maintain

Development support (parse of engineering models like
UML, incremental pattern matching for large models)

Analysis support on intermediate models

NFP in practice: deployment

= We addressed the problem of ,,PIM-PSM”
mappings and code generation

o Similar works in SENSORIA: MDDA4SOA transformations
o Focusing on orchestration

= Goal:
o Have a flexible toolkit to generate middleware

<reliabityParams> <SecurityParams=>
<|nactivity Timeout>60</Inactivity Timeout=> <AuthTokenType=usemame=</AuthTokenType>
<MaximumRetransmission Count>3</MaximumRetransmissionCount= <EncryptBody=>true</EncryptBody=>
<kExponentialBackott>talse</ExponentialBackott= <EncryptSignature=false</Encryptsignature>
<AcknowledgementInterval=100</Acknowledgementinterval>= <EncryptAlgorithm>default</EncryptAlgorithm=>
<Retransmission|Interval=10000</Retransmissioninterval= <SignBody=true</SignBody>
=SequenceRemovalTimeout=60</SequenceRemovalTimeaout= <EncryptHeader=>false</EncryptHeader=>
<|nvokalnOrdaer>true</Invoke inOrdear> <UseTimaStamp=true</UsaeTimaStamp=
</reliabityParams=> <SignHeader>false</SignHeader>
=SignAlgorithm=>default</SignAlgorithm=>
o </SecurityParams=>

Deployment-specific transformations

Code
level

(imported to SOA RM model |— ———— = XML model
VIATRA)

Performability analysis of middleware
configuration: ,,cost of reliability”
(Gonczy, Déri, Varro, MDWE 2008)

I
I
I
[
I
[
I
[
I
[
I
[
LML model :
I
I
[
I
[
I
[
I
[
I
[

Bl Ly »| PEPA model

Service analysis models

General deployment transformation overview

UML instance level

UML class level Trace model Textual Description

(&)
o
O
For each Participant (running
within an Apache component),
an XMLDocument (called

services. xml) s generated.

(]
Find S e

For each Service {run-time

participating
instance), a corresponding

pa rties XMLEfement (called service) s
L generated {on the provider side)

as a placeholder for non-

Flnd * __' * ==~ == B functional (and other) service

parameters.

services

For each NFCharacterisfics
instance resided in a NFConiract
instance agreed for a specific
sarvica, a naw XMLElement iz
derived inside the corresponding
service XMLElement.

ZElement

«MFConiracts
cir - Conbraat

Find contracts

wguaranbesdC

sMFCharacieristcss sMFCharactansticss
Characteristics chr ; Characterslics

For each RunTimeValue

«MFCharactaristicss [eHFCharaciareiices |
Characteristics ';_m - (instance) corresponding to a
—am‘efm“,_ml- . i I ithi

Find parameters Enhanced approac

(NFCharacteristics) filtering” aspects is not
: handcoded,

stored in a separate polic

Dimension
LR Timealues -Sname

RunTima\akies m ="al
"“—uml—

=
=
=]
4

References

= L. Gonczy, Zs. Déri, and D. Varro. Model Driven Performability
Analysis of Service Configurations with Reliable Messaging. In Proc.
of Model Driven Web Engineering Workshop (MDWE) 2008,

= Jerry Preissler & David Bosschaert: Policy Support in Eclipse STP
(www.eclipse.org/stp)

= Anish Karmarkar, Ashok Malhotra, David Booz, Service Component
Architecture (SCA) Tutorial, 2007.

= L. Gonczy et al. ThO4.b, Methodologies for MDA and Deployment,
Second version. Deliverable of SENSORIA EU FP6 project, 2008.

= N.LOOKER et al.: SIMULATING ERRORS IN WEB SERVICES

= Alodib&Bordbar: A model-based approach to Fault diagnosis in
Service oriented Architectures

= Reniecke, Wolter, Malek: A Survey on Fault-Models for QoS Studies
of Service-Oriented Systems

= May Chan, Bishop, Steyn, Baresi and Guinea: A Fault Taxonomy for
Web Service Composition

