
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Standard platforms: Web services
(and dependability)

László Gönczy
Dept. of Measurement and Information Systems

Content

 Basics of Web services (WS-*)

 Fault classification &fault injection for Web
services

 Performability analysis of WS-middleware

 Correctness of service compositions

 Performance analysis of service compositions

 Dependability analysis of service compositions

 Automated deployment

2

3
Web service architecture

 One possible way of „SOA”

Service
descriptions

Client Provider

4
Web service architecture

 One possible way of „SOA”

Publish

Service
descriptions

Client Provider

5
Web service architecture

 One possible way of „SOA”

Query

Service
descriptions

Client Provider

6
Web service architecture

 One possible way of „SOA”

Service list

Service
descriptions

Client Provider

7
Web service architecture

 One possible way of „SOA”

Request

Service
descriptions

Client Provider

8
Web service architecture

 One possible way of „SOA”

Response

Service
descriptions

Client Provider

9
Web Services standards

 XML languages

 Low level specs. of functionality

UDDI / WSIL

WSDL

SOAP

Web service stack

communication

method invocation

discovery

Communication layer
(on top of a

transport layer:
HTTP, FTP, JMS, ...)

10
Web service standards

 XML languages

 Low level specs. of functionality

UDDI / WSIL

WSDL

SOAP

Syntax
HOW?

(ports, operations, messages)

Web service stack

communication

method invocation

discovery

11
Web Service standards

 XML languages

 Low level specs. of functionality

UDDI / WSIL

WSDL

SOAP

registration
WHERE?

(„Yellow pages” /

advertisers)

Web service stack

communication

method invocation

discovery

Objectives of service integration
 Service-Oriented Architectures (SOA):

o Flexible and dynamic platform to deliver business services

 Requirements:
o Reduced time-to-market
o Increased quality of service

 Challenges
o Specification and querying of services?
o Correctness and consistency of service composition?
o Continuous operation in changing environment

(no service outages)?
o Design for justifiable SLA-compliance

(security, performance, reliability, availability)?

 To meet such non-functional requirements,
o A service needs to be designed for reliability
o Architectural level design decisions

What is „non-functional”?

 Everything which is above the core functionality

o Also called „extra-functional”

 Under what circumstances is a service provided?

oWhen is it available?

o What response time does it guarantee?

o How many requests can be sent to the system (from
how many clients)?

o What prevents messages from being lost?

o Can messages of a given service be tampered with?

The beautiful world of standards….
<<NF>>

High level security and trust

<<NF>>
Security tokens

XML documents

<<NF>>
XML signature and encryptionNetwork transport

Messaging modes for Web
services

Description, discovery and policies

<<NF>>
Reliable communication

Transactionality

Orchestration

Reliable messaging: WS-RM
 „TCP protocol” for Web services
 What is reliable messaging?

o Acknowledgements
o Message ordering
o Filtering duplicates
o Guaranteed delivery
o Timing paremeters

 Messaging semantics
o At-least once
o At-most-once
o Exactly-once

 Convergence of multiple standards (MS, IBM)
 Implementations

o RAMP (IBM WebSphere Application Server)
o Apache Sandesha (Axis2)
o Microsoft Windows Communication Foundation
o Bea WebLogic (Oracle)

Standards:WS-Security

 Encryption for body and header

 Digital signature for body and header

 Authentication tokens

 Timestamps allow the user to specify timestamps
for messages

Example: components of a financial case study

Example: finance case study
 All services should be available only via secure connections. This means

digital signatures for the entire message and encryption of the message
body. Messages sent to this service should be acknowledged.

 Customer Transaction Service should provide an answer to the customer
about the receipt of his request soon, therefore its maximum response
time should be no longer than 8 seconds.

 Balance Validation Service should send an acknowledgement of all
incoming request. As this is a resource-intensive task, multiple instances
of the same request should be identified and filtered out. Since the
complete balance validation may require human interaction as well
(depending on the business rules of the bank), a quick answer to all
validation requests cannot be expected. However, some feedback about
the initiation of the validation process should be sent back soon, with an
average of 5 seconds and maximum value of 8 seconds. The throughput
of this service is also of outmost importance, resulting in a requirement
of 6 user requests per second. On the other hand, maximum throughput
of the service is also bound due to the bank policies in 20 requests per
second.

Example: finance case study

 Authentication Service is used by many applications,
therefore its throughput can be a bottleneck in the
system. To support a continuous service, a minimum
throughput of 100.000 requests/hour is required.
This throughput is used by multiple the applications
relying on the authentication service, e.g., Credit
Request Process.

 Credit Request Process is depending on the above
services. Most of its requirements are derived from
requirements of the invoked services (e.g., where
and what to encrypt), but some are also implied by
the customer portal interface. Such a requirement is
the performance of this process and the non-
repudiation of requests.

Content

 Basics of Web services (WS-*)

 Fault classification &fault injection for Web
services

 Performability analysis of WS-middleware

 Correctness of service compositions

 Performance analysis of service compositions

 Dependability analysis of service compositions

 Automated deployment

20

Web service faults and effects

21

Fault injection models

22

Bernoulli
distribution

Random variable
(distribution, density,

mean+ quantile….)

Stoachastic
processes for state

description

WS-FIT

 Web services fault injection technology

o Univ. Durham, Univ. Leeds

 Standard network level fault injection techniques:

o Easy to detect at the application/middleware level

 RPC level faults can be injected

oWSDL = API

o SOAP level fault injection

 Handling of middleware faults can be tested

o E.g. Axis failure modes: connection refused, unknown
host, wrong content type, XML parser errors…

23

Test case

24

25
Security analysis

 Systematic attack based on WSDL

o Public information

 „Brute force” attack (XML parsing)

o Overloed: parsing comes bottleneck

 „XML injection”

o Changing the parsing process
• Eg. using XPath, XSTL, XQuery

 External reference-based attack

o Linking a document

 SOAP protocol level attack

 Network level attack

Content

 Basics of Web services (WS-*)

 Fault classification &fault injection for Web
services

 Performability analysis of WS-middleware

 Correctness of service compositions

 Performance analysis of service compositions

 Dependability analysis of service compositions

 Automated deployment

26

Performability analysis

 „Performability = Performance + Reliability”

 What happens if something goes wrong?

o E.g., reliable communication middleware with re-
sending can mask network faults but the guarenteed
response time can be longer

o E.g. if the acknowledgement interval is too small, false
alerts are sent

 What is the „cost of reliability”?

 How to tune SLA parameters?

Service Provider

ServerIdle

Processing

?send

?resend

!ack

Service Requestor

ClientIdle

Sent1x

Fail1x

Sent2x Sent3x

Fail2x Failure

Success

!send !resend !resend

timeout timeout timeout

reset

?ack ?ack ?ack

!ack

Performability model
 Abstract behaviour of

o Service provider

o Service consumer

 Reliable messaging parameters (derived)
• Number of resends

• Parameters of send, resend, ack (exponential distribution)

send

resend

ack

Analysis results: Utilization

Steady state analysis of Throughput / Utilization

 What percentage is fault handling (when the client waits)?

Success

Failure

MsgSent1

MsgSent2

MsgSent1

Fail1

ClientIdle

Fail2

~23%

Sensitivity Analysis: where to improve?
How does the probability of system-level failure change
if there is a change of the parameter of resend?

Analysis results: Sensitivity analysis

Small increase in Ack rate,
significant reduction of failures

Content

 Basics of Web services (WS-*)

 Fault classification &fault injection for Web
services

 Performability analysis of WS-middleware

 Correctness of service compositions

 Performance analysis of service compositions

 Dependability analysis of service compositions

 Automated deployment

31

Analysis of service compositions

 Design tools offer only syntax check

 Static analysis in BPEL 2.0

o Constraints on workflows (attributes, structure)

 Safety critical services

o E.g. e-Health

 Ensure correct functioning of combined services

BPEL flaws

 Missing data
 Deadlock
 Effect of faulty data

Workflow assessment

Model
checker

Graphical
editor

Workflow
description

Runtime
observations

Generation Deployment

Instantiation

Improvement

Modeling

Verification

Workflow
engine

Transformation chain

Case study&back-annotation

Content

 Basics of Web services (WS-*)

 Fault classification &fault injection for Web
services

 Performability analysis of WS-middleware

 Correctness of service compositions

 Performance analysis of service compositions

 Dependability analysis of service compositions

 Automated deployment

37

Performance analysis with PEPA
Performance analysis with PEPA

 PEPA is a formal language for quantitative analysis of
systems
 A model is expressed in terms of components which perform

timed activities and co-operate with each other
 Based on process algebras,
 Synchronization, Parallel, sequential composition
 Length of activities: Exponential distribution
 Generates continuous-time Markov chain (or differential equations)

 PEPA supports steady-state analysis to answer questions
such as:
 What is the percentage of time that the local discovery server is

idle in the long run? (Utilisation Analysis)
 What is the throughput at which remote services are

discovered? (Throughput Analysis)
 What is the probability that the system does compensation

upon notification of failure?

UML4SOA Performance Analysis
 The transformation of UML4SOA-annotated activity diagrams follows the

rationale behind the treatment of plain activity diagrams:

o An Action Node is stereotyped with PaStep, which indicates the rate of
execution (with an exponential distribution). It is modelled as a prefix
(action, rate).Process

o A Decision Node is modelled with a PEPA choice ProcessA + ProcessB

o A Fork Node activates one or more flows of behaviour, modelled as
synchronising sequential components

o A Join Node makes all incoming flows synchronise on the same activity,
enforcing that the outgoing flow executes after all the incoming ones
terminate

39

Performance Analysis with PEPA
 Key UML4SOA-specific element: communication between activity

diagrams

 Each activity is modelled as a distinct component
 Message exchange modelled as a shared activity (named after the

sender’s pins <<snd>> and <<lnk>>)
 Support for asynchronous and synchronous messages (according to the

stereotypes <<send>>, <<receive>>, <<reply>>, etc.)
o Here, the asynchronous message is dispatched by a buffer component and

the sender does not wait while the communication is happening
40

Performance Results

Varying Workload. The number of applications processed successfully grows
with the number of users. A bottleneck occurs for populations larger than
93.

Performance Results

Sensitivity Analysis. The number of applications processed depends on the
rate at which the entry requirements are checked. However, for sufficiently
large rates further increases do not impact significantly on the user-
perceived system performance.

Content

 Basics of Web services (WS-*)

 Fault classification &fault injection for Web
services

 Performability analysis of WS-middleware

 Correctness of service compositions

 Performance analysis of service compositions

 Dependability analysis of service compositions

 Automated deployment

43

Dependability analysis of composite services

Composite services
 Composed of basic service components
 Only partial control over the different services
Analysis of composite services
 According to SLA parameters of services

(e.g. throughput, reliability, availability)
 User perceived service:

potentially different service levels for different users
 Required parameters for the invoked services
 Guaranteed parameters for the main service
Non-functional analysis
 PREDICTION of

o Dependability metrics for the services
o Business impacts

 WHAT-IF analysis

Phased Mission Systems
Upper layer: phases
•Operational life
•Tree or cyclic Petri Net
•One active phase („performing action X”)
•Routing may depend on resource states

DEEM tool
•Dependability Evaluation of Multiple-phased Systems
•Representation: Deterministic and Stochastic Petri Nets
•Evaluation: Markov Regenerative Processes
•Developed in Pisa/Florence

Multiple Phased Systems
•Systems which lifecycle consists of different phases
•Phases have different resource characteristics
•Expected response time
•Failure rate, etc.

Lower layer: resources
•Representing the state of the system
•Characteristics depend on the actual phase

Example: Phased Mission Systems

 Stochastic modeling
 Phased operational life
 System changes during the phases
o E.g. resource states

 System characteristics depend on the actual phase
o E.g. phase-dependent failure rates

 Mission goal depends on system state
oDegradation

 Dependability modeling and analysis
oDescribed as GSPN
oOriginally for mission-critical systems

SOA service flows as PMS
 SOA service flow as PMS
 The operational life is built of distinct steps
oWeb service invocations are the phases
o The dependability requirements of the phases are

different
• Based on Service Level Agreements

o The execution of the phases depends on the result
of previous steps
• Restricted operation if a service invocations fails

 Dependability of the main service
 Bottleneck analysis
 Sensitivity analysis
oComponent’s failure rate System dependability

„Toolchain”

An example Web service flow

The resulting PMS

Content

 Basics of Web services (WS-*)

 Fault classification &fault injection for Web
services

 Performability analysis of WS-middleware

 Correctness of service compositions

 Performance analysis of service compositions

 Dependability analysis of service compositions

 Automated deployment

51

Why do we need development support?

 Evolving standards and platforms

 Configuration details not known for application developer

 The (XML) configuration is not portable if the model
changes

 Consistency of large systems have to be ensured

 E.g. SLA WS-* mapping

 Service intgerator can focus on business logic

 Helps „correct” modeling/development

o Find incorrect/contradicting requirements

o Domain/business specific requirements

Why model transformations?

 Why not XSLT, Jet, ….?

 They capture the problem at a higher level of abstraction

 Easier to maintain

 Development support (parse of engineering models like
UML, incremental pattern matching for large models)

 Analysis support on intermediate models

NFP in practice: deployment

 We addressed the problem of „PIM-PSM”
mappings and code generation

o Similar works in SENSORIA: MDD4SOA transformations

o Focusing on orchestration

 Goal:

o Have a flexible toolkit to generate middleware
configurations

o Starting from UML4SOA

o Follow changing WS-* standards and platforms

 Result: XML configurations (WSDL, policies)

Deployment-specific transformations

PIM
levelPIM

level

Code
level

Performability analysis of middleware
configuration: „cost of reliability”
(Gönczy, Déri, Varró, MDWE 2008)

PSM
level

General deployment transformation overview

Find
participating

parties

Find
services

Find contracts

Find parameters
(NFCharacteristics)

Enhanced approach:
„filtering” aspects is not

handcoded,
stored in a separate policy

References
 L. Gönczy, Zs. Déri, and D. Varró. Model Driven Performability

Analysis of Service Configurations with Reliable Messaging. In Proc.
of Model Driven Web Engineering Workshop (MDWE) 2008,

 Jerry Preissler & David Bosschaert: Policy Support in Eclipse STP
(www.eclipse.org/stp)

 Anish Karmarkar, Ashok Malhotra, David Booz, Service Component
Architecture (SCA) Tutorial, 2007.

 L. Gönczy et al. Th04.b, Methodologies for MDA and Deployment,
Second version. Deliverable of SENSORIA EU FP6 project, 2008.

 N. LOOKER et al.: SIMULATING ERRORS IN WEB SERVICES
 Alodib&Bordbar: A model-based approach to Fault diagnosis in

Service oriented Architectures
 Reniecke, Wolter, Malek: A Survey on Fault-Models for QoS Studies

of Service-Oriented Systems
 May Chan, Bishop, Steyn, Baresi and Guinea: A Fault Taxonomy for

Web Service Composition

